函數(shù)f(x)的定義域是D,任意的a,b∈D,有,f(x)的反函數(shù)為H(x),已知H(a),H(b),則H(a+b)=   
【答案】分析:設(shè)H(a)=x1,H(b)=x2,由H(x)是f(x)的反函數(shù),知f(x1)=a,f(x2)=b,由任意的a,b∈D,有,知f(x1)+f(x2)=,由此能求出H(a+b).
解答:解:設(shè)H(a)=x1,H(b)=x2,
∵H(x)是f(x)的反函數(shù),
∴f(x1)=a,f(x2)=b,
∵任意的a,b∈D,有
∴把x1,x2代入得
f(x1)+f(x2)=,
∵f(x1)+f(x2)=a+b,
∴a+b=,
∴H(a+b)=
=
點(diǎn)評(píng):本題考查反函數(shù)的性質(zhì)和應(yīng)用,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)的定義域?yàn)閧x|x≠0},且滿足對(duì)于定義域內(nèi)任意的x1,x2都有等式f(x1•x2)=f(x1)+f(x2
(Ⅰ)求f(1)的值;
(Ⅱ)判斷f(x)的奇偶性并證明;
(Ⅲ)若f(2)=1,且f(x)在(0,+∞)上是增函數(shù),解關(guān)于x的不等式f(2x-1)-3≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)的定義域是[0,1),則F(x)=f[log 
12
(3-x)
]的定義域?yàn)?!--BA-->
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0且a≠1,函數(shù)f(x)=loga(x+1),g(x)=loga
11-x
,記F(x)=2f(x)+g(x)
(1)求函數(shù)F(x)的定義域D及其零點(diǎn);
(2)試討論函數(shù)F(x)在定義域D上的單調(diào)性;
(3)若關(guān)于x的方程F(x)-2m2+3m+5=0在區(qū)間[0,1)內(nèi)僅有一解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)的定義域?yàn)椋?1,1),它在定義域內(nèi)既是奇函數(shù)又是增函數(shù),且f(a-3)+f(4-2a)<0,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)的定義域?yàn)閇-1,2],則函數(shù)
f(x+2)
x
的定義域?yàn)椋ā 。?/div>
A、[-1,0)∪(0,2]
B、[-3,0)
C、[1,4]
D、(0,2]

查看答案和解析>>

同步練習(xí)冊(cè)答案