【題目】已知集合P={y|y=( x , x>0},Q={x|y=lg(2x﹣x2)},則(RP)∩Q為(
A.[1,2)
B.(1,+∞)
C.[2,+∞)
D.[1,+∞)

【答案】A
【解析】解:∵P={y|y=( x , x>0}={y|0<y<1},Q={x|y=lg(2x﹣x2)}={x|2x﹣x2>0}={x|0<x<2},
RP={y|y≤0或y≥1},
∴(RP)∩Q={x|1≤x<2}=[1,2).
故選:A.
【考點精析】本題主要考查了交、并、補集的混合運算的相關(guān)知識點,需要掌握求集合的并、交、補是集合間的基本運算,運算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語言表達(dá),增強數(shù)形結(jié)合的思想方法才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 的焦點為,圓 .直線與拋物線交于點、兩點,與圓切于點.

(1)當(dāng)切點的坐標(biāo)為時,求直線及圓的方程;

(2)當(dāng)時,證明: 是定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=( + )x3
(1)求f(x)的定義域.
(2)討論f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時,求曲線在點處的切線方程;

(Ⅱ)證明:對于 在區(qū)間上有極小值,且極小值大于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點在圓上, 的坐標(biāo)分別為, ,線段的垂直平分線交線段于點

1)求點的軌跡的方程;

2)設(shè)圓與點的軌跡交于不同的四個點,求四邊形的面積的最大值及相應(yīng)的四個點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (m∈Z)為偶函數(shù),且在(0,+∞)上為增函數(shù).
(1)求m的值,并確定f(x)的解析式;
(2)若g(x)=loga[f(x)﹣ax](a>0且a≠1),是否存在實數(shù)a,使g(x)在區(qū)間[2,3]上的最大值為2,若存在,求出a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U={R},集合A={x|log2(3﹣x)≤2},集合B=
(1)求A,B;
(2)求(CUA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】計算下列各式的值:
(1) ﹣( 0+( 0.5+ ;
(2)lg500+lg lg64+50(lg2+lg5)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各組對象不能構(gòu)成一個集合的是(
A.不超過20的非負(fù)實數(shù)
B.方程x2﹣9=0在實數(shù)范圍內(nèi)的解
C. 的近似值的全體
D.臨川十中2016年在校身高超過170厘米的同學(xué)的全體

查看答案和解析>>

同步練習(xí)冊答案