數(shù)列{an}的前n項(xiàng)和為Sn,若a1=1,an+1=3Sn(n≥1),則a6=( )
A.3×44
B.3×44+1
C.44
D.44+1
【答案】分析:根據(jù)已知的an+1=3Sn,當(dāng)n大于等于2時(shí)得到an=3Sn-1,兩者相減,根據(jù)Sn-Sn-1=an,得到數(shù)列的第n+1項(xiàng)等于第n項(xiàng)的4倍(n大于等于2),所以得到此數(shù)列除去第1項(xiàng),從第2項(xiàng)開始,為首項(xiàng)是第2項(xiàng),公比為4的等比數(shù)列,由a1=1,an+1=3Sn,令n=1,即可求出第2項(xiàng)的值,寫出2項(xiàng)以后各項(xiàng)的通項(xiàng)公式,把n=6代入通項(xiàng)公式即可求出第6項(xiàng)的值.
解答:解:由an+1=3Sn,得到an=3Sn-1(n≥2),
兩式相減得:an+1-an=3(Sn-Sn-1)=3an,
則an+1=4an(n≥2),又a1=1,a2=3S1=3a1=3,
得到此數(shù)列除去第一項(xiàng)后,為首項(xiàng)是3,公比為4的等比數(shù)列,
所以an=a2qn-2=3×4n-2(n≥2)
則a6=3×44.
故選A
點(diǎn)評(píng):此題考查學(xué)生掌握等比數(shù)列的確定方法,會(huì)根據(jù)首項(xiàng)和公比寫出等比數(shù)列的通項(xiàng)公式,是一道基礎(chǔ)題.