求證下列不等式

x∈(0,+∞)

答案:
解析:

  證:

  

  ∴ ∴ 恒成立

  ∴  

  

  ∴

  ∴ 恒成立


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

7、用比較法證明下列不等式x,y∈R,x≠y,求證:x4+y4>x3y+xy3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

先閱讀下列不等式的證法,再解決后面的問(wèn)題:
已知a1,a2∈R,a1+a2=1,求證a12+a22
1
2

證明:構(gòu)造函數(shù)f(x)=(x-a12+(x-a22=2x2-2x+a12+a22
因?yàn)閷?duì)一切x∈R,恒有f(x)≥0,所以△=4-8(a12+a22)≤0,從而得a12+a22
1
2

(1)若a1,a2,…,an∈R,a1+a2+…+an=1,請(qǐng)寫(xiě)出上述結(jié)論的推廣式;
(2)參考上述解法,對(duì)你推廣的結(jié)論加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知x、y∈R,求證下列不等式:

x2+y2≥(x+y)2;

x2+y2≥(x+y)2;

x2+y2≥(x+y)2.

(2)請(qǐng)你根據(jù)上述不等式推出更一般的結(jié)論,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高三數(shù)學(xué)復(fù)習(xí)(第5章 不等式):5.2 不等式證明(解析版) 題型:解答題

用比較法證明下列不等式x,y∈R,x≠y,求證:x4+y4>x3y+xy3

查看答案和解析>>

同步練習(xí)冊(cè)答案