已知拋物線y=x2,直線y=kx+2,直線與拋物線所圍成封閉圖形的面積記為S(k).
(1)當k=1時,求出此時S(k)對應的值;
(2)寫出S(k)的表達式,并求出對應的最大和最小值.
【答案】分析:(1)先將兩曲線聯(lián)立,求得交點橫坐標,用來確定積分區(qū)間,再根據(jù)定積分的幾何意義,將所求面積轉化為求定積分問題,最后由微積分基本定理計算結果即可
(2)先將兩曲線聯(lián)立,得曲線交點的橫坐標x1、x2,從而得x1-x2,x1+x2,x1x2的值(用k表示),再根據(jù)定積分的幾何意義,將所求面積轉化為求定積分問題,最后由微積分基本定理計算,將結果用x1-x2,x1+x2,x1x2表示,代入即可得函數(shù)S(k)的表達式,最后利用換元法求函數(shù)的值域即可
解答:解:(1)將y=x+2代入y=x2,得x=-1或x=2
∴S(1)=∫-12(x+2-x2)dx=(+2x-)|-12=(2+4-)-(-2+)=
∴S(1)=
(2)將y=kx+2代入y=x2,得x1=或x2=
∴x1-x2=-,x1+x2=k,x1x2=-2
∴S(k)==(+2x-=(+2x1-x13)-(+2x2-x23)=(x1-x2)[(x1+x2)+2-]=-+2-)=
設t=,則t,則y==
∴S(k)=,此函數(shù)的最小值為,無最大值
點評:本題綜合考查了定積分的幾何意義,利用微積分基本定理求定積分的方法,一元二次方程根與系數(shù)的關系及其應用
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知拋物線y=-x2+3上存在關于直線x+y=0對稱的相異兩點A、B,則|AB|等于(  )
A、3
B、4
C、3
2
D、4
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y=-x2+ax+
12
與直線y=2x
(1)求證:拋物線與直線相交;
(2)求當拋物線的頂點在直線的下方時,a的取值范圍;
(3)當a在(2)的取值范圍內時,求拋物線截直線所得弦長的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y=x2+bx+c在其上一點(1,2)處的切線與直線y=x-2平行,則b、c的值分別為
-1、2
-1、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y=x2+4ax-4a+3,y=x2+2ax-2a至少有一條與x軸相交,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y=x2上有一定點A(-1,1)和兩動點P、Q,當PA⊥PQ時,點Q的橫坐標取值范圍是( 。
A、(-∞,-3]B、[1,+∞)C、[-3,1]D、(-∞,-3]∪[1,+∞)

查看答案和解析>>

同步練習冊答案