直線y=k(x-a)(a>0)與拋物線y2=2px相交于A、B兩點,F(xiàn)(a,0)為焦點,若點P的坐標(biāo)為(-a,0),則


  1. A.
    ∠APF<∠BPF
  2. B.
    ∠APF>∠BPF
  3. C.
    ∠APF=∠BPF
  4. D.
    以上均有可能
C
分析:設(shè)A(x1,y1),B(x2,y2),不妨設(shè)y1>0,y2<0,tan∠APF=,tan∠BPF=-,聯(lián)立直線方程與拋物線方程消掉y得x的二次方程,通過作差由韋達(dá)定理可得tan∠APF-tan∠BPF=0,從而tan∠APF=tan∠BPF,再由兩角的范圍可得∠APF=∠BPF.
解答:設(shè)A(x1,y1),B(x2,y2),不妨設(shè)y1>0,y2<0,
得k2x2-(2ak2+2p)x+k2a2=0(k≠0),
,,
tan∠APF=,tan∠BPF=-,
因為tan∠APF-tan∠BPF==
=
===0,
所以tan∠APF=tan∠BPF,
又∠APF與∠BPF均為銳角,
所以∠APF=∠BPF,
故選C.
點評:本題考查直線與圓錐曲線的位置關(guān)系,考查學(xué)生分析解決問題的能力,解決本題的關(guān)鍵是建立兩角正切值與直線斜率的關(guān)系,通過作差可利用韋達(dá)定理解決問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線y=k(x-a)(a>0)與拋物線y2=2px相交于A、B兩點,F(xiàn)(a,0)為焦點,若點P的坐標(biāo)為(-a,0),則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=k(x-a)+1與橢圓
x2
4
+
y2
2
=1
總有公共點,則實數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線y=k(x-a)(a>0)與拋物線y2=2px相交于A、B兩點,F(xiàn)(a,0)為焦點,若點P的坐標(biāo)為(-a,0),則( 。
A.∠APF<∠BPFB.∠APF>∠BPF
C.∠APF=∠BPFD.以上均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年陜西省榆林市神木中學(xué)高二(上)數(shù)學(xué)寒假作業(yè)4(理科)(解析版) 題型:選擇題

直線y=k(x-a)(a>0)與拋物線y2=2px相交于A、B兩點,F(xiàn)(a,0)為焦點,若點P的坐標(biāo)為(-a,0),則( )
A.∠APF<∠BPF
B.∠APF>∠BPF
C.∠APF=∠BPF
D.以上均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年安徽省宣城中學(xué)、寧國中學(xué)高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

直線y=k(x-a)+1與橢圓總有公共點,則實數(shù)a的取值范圍是( )
A.[-2,2]
B.[-1,1]
C.
D.

查看答案和解析>>

同步練習(xí)冊答案