19.近年來青海玉樹多次發(fā)生地震,給當?shù)鼐用駧砹瞬簧贋碾y,其中以2010年4月1號的7.1級地震和2016年10月17號的6.2級地震帶來的災難較大;早在20世紀30年代,美國加州理工學院的地震物理學家里克特就制定了我們常說的里氏震級M,其計算公式為M=lgA-lgA0(其中A是被測地震的最大振幅,A0是“標準地震”的振幅),那么7.1級地震的最大振幅是6.2級地震的最大振幅的100.9倍.

分析 由題意,設(shè)7.1級地震的最大振幅是A,6.2級地震的最大振幅是B,則7.1-6.2=lgA-lgB,即可得出結(jié)論.

解答 解:由題意,設(shè)7.1級地震的最大振幅是A,6.2級地震的最大振幅是B,
則7.1-6.2=lgA-lgB,
∴$\frac{A}{B}$=100.9
故答案為100.9

點評 本題考查利用數(shù)學知識解決實際問題,考查學生的計算能力,比較基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

9.設(shè)f:x→|x|+1是非空集合A到非空集合B的映射,若A={-1,0,1}且集合B只有兩個元素,則B={1,2};若B={1,2},則滿足條件的集合A的個數(shù)是7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知正三棱錐的底面邊長是3,高為$\frac{1}{2}$,則這個正三棱錐的側(cè)面積為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.計算:
(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}}$-(-9.6)0-(3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}}$+(1.5)-2;
(2)lg5+lg2•lg5+(lg2)2+eln3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)f(x)=Asinωx(A>0,ω>0)在[-$\frac{π}{2}$,$\frac{2π}{3}$]上是增函數(shù),則ω的最大值是( 。
A.1B.2C.$\frac{3}{4}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.某小區(qū)提倡低碳生活,環(huán)保出行,在小區(qū)提供自行車出租.該小區(qū)有40輛自行車供小區(qū)住戶租賃使用,管理這些自行車的費用是每日92元,根據(jù)經(jīng)驗,若每輛自行車的日租金不超過5元,則自行車可以全部出租,若超過5元,則每超過1元,租不出的自行車就增加2輛,為了便于結(jié)算,每輛自行車的日租金x元只取整數(shù),用f(x)元表示出租自行車的日純收入(日純收入=一日出租自行車的總收入-管理費用)
(1)求函數(shù)f(x)的解析式及其定義域;
(2)當租金定為多少時,才能使一天的純收入最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.下列四個命題:
(1)函數(shù)f(x)在x>0時是增函數(shù),x<0時也是增函數(shù),所以f(x)是增函數(shù);
(2)若m=loga2,n=logb2且m>n,則a<b;
(3)函數(shù)f(x)=x2+2(a-1)x+2在區(qū)間(-∞,4]上是減函數(shù),則實數(shù)a的取值范圍是a≤-3;
(4)y=log${\;}_{\frac{1}{2}}}$(x2+x-2)的減區(qū)間為(1,+∞).
其中正確的個數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設(shè)數(shù)列{an}的前n項和為Sn,已知S2=6,an+1=4Sn+1,n∈N*
(I)求通項an
(Ⅱ)設(shè)bn=an-n-4,求數(shù)列{|bn|}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.在△ABC中,根據(jù)下列條件解三角形,則其中有兩個解的是( 。
A.b=10,A=45°,B=60°B.a=60,c=48,B=120°
C.a=7,b=5,A=75°D.a=14,b=16,A=45°

查看答案和解析>>

同步練習冊答案