【題目】如圖,△ABC是圓的內(nèi)接三角形,∠BAC的平分線交圓于點D,交BC于E,過點B的圓的切線與AD的延長線交于點F,在上述條件下,給出下列四個結(jié)論:
①BD平分∠CBF;
②FB2=FDFA;
③AECE=BEDE;
④AFBD=ABBF.
所有正確結(jié)論的序號是( )
A.①②
B.③④
C.①②③
D.①②④
【答案】D
【解析】解:∵圓周角∠DBC對應劣弧CD,圓周角∠DAC對應劣弧CD,
∴∠DBC=∠DAC.
∵弦切角∠FBD對應劣弧BD,圓周角∠BAD對應劣弧BD,
∴∠FBD=∠BAF.
∵AD是∠BAC的平分線,
∴∠BAF=∠DAC.
∴∠DBC=∠FBD.即BD平分∠CBF.即結(jié)論①正確.
又由∠FBD=∠FAB,∠BFD=∠AFB,得△FBD~△FAB.
由 ,F(xiàn)B2=FDFA.即結(jié)論②成立.
由 ,得AFBD=ABBF.即結(jié)論④成立.
正確結(jié)論有①②④.
所以答案是D
【考點精析】通過靈活運用命題的真假判斷與應用,掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=xex+ax2+2x+1在x=﹣1處取得極值.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x)﹣m﹣1在[﹣2,2]上恰有兩個不同的零點,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高一(1)班全體男生的一次數(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖所示,據(jù)此解答如下問題:
(1)求該班全體男生的人數(shù);
(2)求分數(shù)在之間的男生人數(shù),并計算頻率公布直方圖中之間的矩形的高;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線系方程(其中為參數(shù)).當時,直線與兩坐標軸所圍成的三角形的面積為__________,若該直線系中的三條直線圍成正三角形區(qū)域,則區(qū)域的面積為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知圓的方程是.
()如果圓與直線沒有公共點,求實數(shù)的取值范圍;
()如果圓過坐標原點,過點直線與圓交于, 兩點,記直線的斜率的平方為,對于每一個確定的,當的面積最大時,用含的代數(shù)式表示,并求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4﹣1:幾何證明選講
如圖,⊙O和⊙O′相交于A,B兩點,過A作兩圓的切線分別交兩圓于C、D兩點,連接DB并延長交⊙O于點E.證明:
(1)ACBD=ADAB;
(2)AC=AE.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從5名女同學和4名男同學中選出4人參加四場不同的演講,分別按下列要求,各有多少種不同選法?(用數(shù)字作答)
(1)男、女同學各2名;
(2)男、女同學分別至少有1名;
(3)在(2)的前提下,男同學甲與女同學乙不能同時選出。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,已知A(5,-2),B(7,3),且AC邊的中點M在y軸上,BC的中點N在x軸上.
(1)求點C的坐標;
(2)求邊上的中線所在直線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)是異面直線,則以下四個命題:①存在分別經(jīng)過直線和的兩個互相垂直的平面;②存在分別經(jīng)過直線和的兩個平行平面;③經(jīng)過直線有且只有一個平面垂直于直線;④經(jīng)過直線有且只有一個平面平行于直線,其中正確的個數(shù)有( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com