已知F1、F2分別是橢圓的左、右焦點(diǎn),A是橢圓上一動(dòng)點(diǎn),圓C與F1A的延長(zhǎng)線、F1F2的延長(zhǎng)線以及線段AF2相切,若M(t,0)為一個(gè)切點(diǎn),則( )
A.t=2
B.t>2
C.t<2
D.t與2的大小關(guān)系不確定
【答案】分析:由題意知,圓C是△AF1F2的旁切圓,點(diǎn)M是圓C與x軸的切點(diǎn),設(shè)圓C與直線F1A的延長(zhǎng)線、AF2分別相切于點(diǎn)P,Q,
則由切線的性質(zhì)可知:AP=AQ,F(xiàn)2Q=F2M,F(xiàn)1P=F1M,由此能求出t的值.
解答:解:由題意知,圓C是△AF1F2的旁切圓,
點(diǎn)M是圓C與x軸的切點(diǎn),
設(shè)圓C與直線F1A的延長(zhǎng)線、AF2分別相切于點(diǎn)P,Q,
則由切線的性質(zhì)可知:
AP=AQ,F(xiàn)2Q=F2M,F(xiàn)1P=F1M,
∴MF2=QF2=(AF1+AF2)-(AF1+AQ)
=2a-AF1-AP
=2a-F1P
=2a-F1M
∴MF1+MF2=2a,
∴t=a=2.
故選A.

點(diǎn)評(píng):本題主要考查橢圓標(biāo)準(zhǔn)方程,簡(jiǎn)單幾何性質(zhì),直線與橢圓的位置關(guān)系,圓的簡(jiǎn)單性質(zhì)等基礎(chǔ)知識(shí).考查運(yùn)算求解能力,推理論證能力;考查函數(shù)與方程思想,化歸與轉(zhuǎn)化思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•湖南)已知F1,F(xiàn)2分別是橢圓E:
x25
+y2=1
的左、右焦點(diǎn)F1,F(xiàn)2關(guān)于直線x+y-2=0的對(duì)稱(chēng)點(diǎn)是圓C的一條直徑的兩個(gè)端點(diǎn).
(Ⅰ)求圓C的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)F2的直線l被橢圓E和圓C所截得的弦長(zhǎng)分別為a,b.當(dāng)ab最大時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•青島二模)已知F1、F2分別是雙曲線C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右焦點(diǎn),P為雙曲線右支上的一點(diǎn),
PF2
F1F2
,且|
PF1
|=
2
|
PF2
|
,則雙曲線的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2分別是雙曲線
x2
a2
-
y2
b2
=1 (a>0, b>0)
的左、右焦點(diǎn),過(guò)點(diǎn)F2與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點(diǎn)M,若點(diǎn)M在以線段F1F2為直徑的圓外,則雙曲線離心率的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn),且橢圓C的離心率e=
1
2
,F(xiàn)1也是拋物線C1:y2=-4x的焦點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)F2的直線l交橢圓C于D,E兩點(diǎn),且2
DF2
=
F2E
,點(diǎn)E關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為G,求直線GD的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2分別是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左,右焦點(diǎn),P是雙曲線的上一點(diǎn),若
PF1
PF2
=0
|
PF1
|•|
PF2
|=3ab
,則雙曲線的離心率是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案