【題目】已知函數(shù)f(x)=ex+ax,(a∈R),其圖象與x軸交于A(x1 , 0),B(x2 , 0)兩點(diǎn),且x1<x2
(1)求a的取值范圍;
(2)證明: ;(f′(x)為f(x)的導(dǎo)函數(shù))
(3)設(shè)點(diǎn)C在函數(shù)f(x)的圖象上,且△ABC為等邊三角形,記 ,求(t﹣1)(a+ )的值.
【答案】
(1)解:∵f(x)=ex+ax,∴f'(x)=ex+a,
若a≥0,則f'(x)>0,則函數(shù)f(x)在R上單調(diào)遞增,這與題設(shè)矛盾.
∴a<0,
令f′(x)>0得x>ln(﹣a),令f′(x)<0得x<ln(﹣a),
∴f(x)在(﹣∞,ln(﹣a))上單調(diào)遞減,在(ln(﹣a),+∞)上單調(diào)遞增,
∴f(x)有兩個(gè)零點(diǎn),
∴fmin(x)=f(ln(﹣a))=﹣a+aln(﹣a),
∴﹣a+aln(﹣a)<0,解得a<﹣e.
(2)解:證明:∵x1,x2是f(x)的零點(diǎn),∴ ,
兩式相減得:a=﹣ .
記 =s,則f′( )=e ﹣ = [2s﹣(es﹣e﹣s)],
設(shè)g(s)=2s﹣(es﹣e﹣s),則g′(s)=2﹣(es+e﹣s)<0,
∴g(s)是減函數(shù),
∴g(s)<g(0)=0,
又 >0,∴f′( )<0.
∵f′(x)=ex+a是增函數(shù),
∴f′( )<f′( )<0
(3)解:由 得 ,∴e =﹣a ,
設(shè)P(x0,y0),在等邊三角形ABC中,易知 ,y0=f(x0)<0,
由等邊三角形性質(zhì)知y0=﹣ ,∴y0+ =0,即 ,
∴﹣a + (x1+x2)+ =0,
∵x1>0,∴ ,
∴﹣at+ (t2+1)+ (t2﹣1)=0,即(a+ )t2﹣2at+a﹣ =0,
∴[(a+ )t+ ](t﹣1)=0,
∵t>1,∴(a+ )t+ =0,
∴ ,
∴ .
【解析】(1)討論a的符號(hào),判斷f(x)的單調(diào)性,計(jì)算f(x)的極值,根據(jù)零點(diǎn)個(gè)數(shù)得出f(x)的極小值為負(fù)數(shù),列出不等式解出a;(2)計(jì)算f′( ),根據(jù)函數(shù)單調(diào)性判斷f′( )的符號(hào),根據(jù)f′(x)的單調(diào)性得出結(jié)論;(3)用x1 , x2表示出P點(diǎn)坐標(biāo),根據(jù)等邊三角形的性質(zhì)列方程化簡(jiǎn)即可求出t和a的關(guān)系,再計(jì)算(t﹣1)(a+ )的值.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前項(xiàng)和為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=xe2x﹣lnx﹣ax.
(1)當(dāng)a=0時(shí),求函數(shù)f(x)在[ ,1]上的最小值;
(2)若x>0,不等式f(x)≥1恒成立,求a的取值范圍;
(3)若x>0,不等式f( )﹣1≥ e + 恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了研究某藥品的療效,選取若干名志愿者進(jìn)行臨床試驗(yàn),所有志愿者的舒張壓數(shù)據(jù)(單位:)的分組區(qū)間為,,,,,將其按從左到右的順序分別編號(hào)為第一組,第二組,,第五組,如圖是根據(jù)試驗(yàn)數(shù)據(jù)制成的頻率分布直方圖,已知第一組與第二組共有20人,第三組沒(méi)有療效的有6人,則第三組中有療效的人數(shù)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競(jìng)賽培訓(xùn),在培訓(xùn)期間他們參加的5次預(yù)寒成績(jī)記錄如下:
甲:82,82,79,95,87
乙:95,75,80,90,85
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)求甲、乙兩人成績(jī)的平均數(shù)與方差;
(3)若現(xiàn)要從中選派一人參加數(shù)學(xué)競(jìng)賽,你認(rèn)為選派哪位學(xué)生參加合適,說(shuō)明理由?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在甲、乙兩個(gè)盒子中分別裝有標(biāo)號(hào)為1,2,3,4,5的五個(gè)球,現(xiàn)從甲、乙兩個(gè)盒子中各取出1個(gè)球,每個(gè)球被取出的可能性相等.
(1)求取出的兩個(gè)球上標(biāo)號(hào)為相鄰整數(shù)的概率;
(2)求取出的兩個(gè)球上標(biāo)號(hào)之和與標(biāo)號(hào)之積都不小于5的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) , 的圖象在點(diǎn) 處的切線(xiàn)為 .
(1)求函數(shù) 的解析式;
(2)若 對(duì)任意的 恒成立,求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線(xiàn) 的極坐標(biāo)方程是 ,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為 軸的正半軸,建立平面直角坐標(biāo)系,在平面直角坐標(biāo)系 中,直線(xiàn) 經(jīng)過(guò)點(diǎn) ,傾斜角 .
(1)寫(xiě)出曲線(xiàn) 的直角坐標(biāo)方程和直線(xiàn) 的參數(shù)方程;
(2)設(shè) 與曲線(xiàn) 相交于 , 兩點(diǎn),求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】乒乓球比賽規(guī)則規(guī)定:一局比賽,雙方比分在10平前,一方連續(xù)發(fā)球2次后,對(duì)方再連續(xù)發(fā)球2次,依次輪換.每次發(fā)球,勝方得1分,負(fù)方得0分.設(shè)在甲、乙的比賽中,每次發(fā)球,發(fā)球方得1分的概率為0.6,各次發(fā)球的勝負(fù)結(jié)果相互獨(dú)立.甲、乙的一局比賽中,甲先發(fā)球.
(1)求開(kāi)始第4次發(fā)球時(shí),甲、乙的比分為1比2的概率;
(2) 表示開(kāi)始第4次發(fā)球時(shí)乙的得分,求 的期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com