設(shè)函數(shù)y=f(x)滿足對任意的x∈R,f(x)≥0且f2(x+1)+f2(x)=9.已知當(dāng)x∈[0,1)時,有f(x)=2-|4x-2|,則f =________.
由題知f=2,因為f(x)≥0且f2(x+1)+f2(x)=9,故f,f=2,f,如此循環(huán)得f =f ,即f
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=mx+3,g(x)=x2+2x+m.
(1)求證:函數(shù)f(x)-g(x)必有零點;
(2)設(shè)函數(shù)G(x)=f(x)-g(x)-1,若|G(x)|在[-1,0]上是減函數(shù),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

經(jīng)市場調(diào)查,某種商品在過去50天的銷量和價格均為銷售時間t(天)的函數(shù),且銷售量近似地滿足f(t)=-2t+200(1≤t≤50,t∈N),前30天價格為g(t)=t+30(1≤t≤30,t∈N),后20天價格為g(t)=45(31≤t≤50,t∈N).
(1)寫出該種商品的日銷售額S與時間t的函數(shù)關(guān)系式;
(2)求日銷售額S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù)f(x)(x∈R)滿足f(-x)=f(x),f(x)=f(2-x),且當(dāng)x∈[0,1]時f(x)=x3.又函數(shù)g(x)=|xcos(πx)|,則函數(shù)h(x)=g(x)-f(x)在上的零點個數(shù)為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)x,y∈R,且4xy+4y2x+6=0,則x的取值范圍是 (  )
A.-3≤x≤2B.-2≤x≤3
C.x≤-2或x≥3D.x≤-3或x≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

知函數(shù)y=f(x)的值域為C,若函數(shù)x=g(t)使函數(shù)y=f[g(t)]的值域仍為C,則稱x=g(t)是y=f(x)的一個等值域變換,下列函數(shù)中,x=g(t)是y=f(x)的一個等值域變換的為(  )
A.f(x)=2x+b,x∈R,x=
B.f(x)=ex,x∈R,x=cost
C.f(x)=x2,x∈R,x=et
D.f(x)=|x|,x∈R,x=lnt

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

有一種新型的洗衣液,去污速度特別快.已知每投放k(1≤k≤4,且k∈R)個單位的洗衣液在一定量水的洗衣機中,它在水中釋放的濃度y(克/升)隨著時間x(分鐘)變化的函數(shù)關(guān)系式近似為y=k·f(x),其中f(x)=若多次投放,則某一時刻水中的洗衣液濃度為每次投放的洗衣液在相應(yīng)時刻所釋放的濃度之和.根據(jù)經(jīng)驗,當(dāng)水中洗衣液的濃度不低于4(克/升)時,它才能起到有效去污的作用.
(1)若只投放一次k個單位的洗衣液,兩分鐘時水中洗衣液的濃度為3(克/升),求k的值;
(2)若只投放一次4個單位的洗衣液,則有效去污時間可達幾分鐘?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本為C(x),當(dāng)年產(chǎn)量不足80千件時,C(x)=x2+10x(萬元).當(dāng)年產(chǎn)量不小于80千件時,C(x)=51x+-1450(萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤L(x)(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式.
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè),則(    )
A.B.2 C.3D.4

查看答案和解析>>

同步練習(xí)冊答案