2.如圖所示,正三角形ABC的外接圓半徑為2,圓心為O,PB=PC=2,D為AP上一點(diǎn),AD=2DP,點(diǎn)D在平面ABC內(nèi)的射影為圓心O.
(Ⅰ)求證:DO∥平面PBC;
(Ⅱ)求平面CBD和平面OBD所成銳二面角的余弦值.

分析 (Ⅰ)連結(jié)AOL,并延長(zhǎng)交BC于點(diǎn)E,連結(jié)PE,推導(dǎo)出DO∥PE,由此能證明DO∥平面PBC.
(Ⅱ)以點(diǎn)E為坐標(biāo)原點(diǎn),以EO、EB、EP所在直線分別為x軸、y軸、z軸,建立空間直角坐標(biāo)系,利用向量法能求出平面CBD和平面OBD所成銳二面角的余弦值.

解答 證明:(Ⅰ)連結(jié)AO,并延長(zhǎng)交BC于點(diǎn)E,連結(jié)PE,
∵O為正三角形ABC的外接圓圓心,
∴AO=2OE,
又AD=2DP,∴DO∥PE,
∵PE?平面PBC,DO?平面PBC,
∴DO∥平面PBC.
解:(Ⅱ)由(Ⅰ)知,DO⊥平面ABC,
∵DO∥PE,∴PE⊥平面ABC,
∴PE⊥BC,PE⊥AE,又AE⊥BC,
∴以點(diǎn)E為坐標(biāo)原點(diǎn),以EO、EB、EP所在直線分別為x軸、y軸、z軸,
建立空間直角坐標(biāo)系,
則E(0,0,0),O(1,0,0),B(0,$\sqrt{3}$,0),P(0,0,1),A(3,0,0),
∴$\overrightarrow{EB}$=(0,$\sqrt{3}$,0),$\overrightarrow{AP}$=(-3,0,1),$\overrightarrow{AD}$=(-2,0,$\frac{2}{3}$),$\overrightarrow{ED}$=$\overrightarrow{EA}+\overrightarrow{AD}$=(1,0,$\frac{2}{3}$),
∴D(1,0,$\frac{2}{3}$),$\overrightarrow{OD}$=(0,0,$\frac{2}{3}$),$\overrightarrow{BO}$=(1,-$\sqrt{3}$,0),
設(shè)平面CDB的一個(gè)法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{EB}=\sqrt{3}y=0}\\{\overrightarrow{n}•\overrightarrow{ED}=x+\frac{2}{3}z=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}$=(-$\frac{2}{3}$,0,1),
設(shè)平面BOD的法向量為$\overrightarrow{m}$=(a,b,c),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BO}=a-\sqrt{3}b=0}\\{\overrightarrow{m}•\overrightarrow{OD}=\frac{2}{3}c=0}\end{array}\right.$,取a=1,得$\overrightarrow{m}$=(1,$\frac{\sqrt{3}}{3}$,0),
cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{-\frac{2}{3}}{\sqrt{\frac{4}{9}+1}•\sqrt{1+\frac{1}{3}}}$=-$\frac{\sqrt{39}}{13}$,
∴平面CBD和平面OBD所成銳二面角的余弦值為$\frac{\sqrt{39}}{13}$.

點(diǎn)評(píng) 本題考查線面平行的證明,考查二面角的余弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=x2+4x+a-5,g(x)=m•4x-1-2m+7.
(1)若函數(shù)f(x)在區(qū)間[-1,1]上存在零點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=0時(shí),若對(duì)任意的x1∈[1,2],總存在x2∈[1,2],使f(x1)=g(x2)成立,求實(shí)數(shù)m的取值范圍;
(3)若y=f(x)(x∈[t,2])的置于為區(qū)間D,是否存在常數(shù)t,使區(qū)間D的長(zhǎng)度為6-4t?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
(注:區(qū)間[p,q]的長(zhǎng)度q-p)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知f(x)=xlnx+mx,且曲線y=f(x)在點(diǎn)(1,f(1))處的切線斜率為1.
(1)求實(shí)數(shù)m的值;
(2)設(shè)$g(x)=f(x)-\frac{a}{2}{x^2}-x+a({a∈R})$在定義域內(nèi)有兩個(gè)不同的極值點(diǎn)x1,x2,求a的取值范圍;
(3)已知λ>0,在(2)的條件下,若不等式${e^{1+λ}}<{x_1}•{x_2}^λ({{x_1}<{x_2}})$恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.把數(shù)列{2n+1}依次按一項(xiàng)、二項(xiàng)、三項(xiàng)、四項(xiàng)循環(huán)分為(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),(29,31,33),(35,37,39,41),…在第100個(gè)括號(hào)內(nèi)的最后一個(gè)數(shù)字為501.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若x,y滿足約束條件$\left\{\begin{array}{l}x-y+1≥0\\ x+y-3≥0\\ x-3≤0\end{array}\right.$則z=x+2y的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖所示,正三角形ABC的外接圓半徑為2,圓心為O,PB=PC=2,D為AP上一點(diǎn),AD=2DP,點(diǎn)D在平面ABC內(nèi)的射影為圓心O.
(Ⅰ)求證:DO∥平面PBC;
(Ⅱ)求三棱錐O-PBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.實(shí)數(shù)x,y滿足(x-y)2+y2=2,則x2+y2的最小值是3-$\sqrt{5}$,最大值是3+$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知區(qū)域E={(x,y)|0≤x≤3,0≤y≤2},F(xiàn)={(x,y)|0≤x≤3,0≤y≤2,x≥y},若向區(qū)域E內(nèi)隨機(jī)投擲一點(diǎn),則該點(diǎn)落入?yún)^(qū)域F內(nèi)的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)$f(x)=sin(x+\frac{π}{3}),\;x∈R$
(Ⅰ)如果點(diǎn)$P(\frac{3}{5},\frac{4}{5})$是角α終邊上一點(diǎn),求f(α)的值;
(Ⅱ)設(shè)g(x)=f(x)+sinx,求g(x)的單調(diào)增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案