【題目】已知f(x)=log (x2﹣2x)的單調(diào)遞增區(qū)間是( )
A.(1,+∞)
B.(2,+∞)
C.(﹣∞,0)
D.(﹣∞,1)
【答案】C
【解析】解:令t=x2﹣2x>0,求得x<0,或x>2,故函數(shù)的定義域為(﹣∞,0)∪(2,+∞),
且f(x)=log (x2﹣2x)=g(t)=log t.
根據(jù)復合函數(shù)的單調(diào)性,本題即求函數(shù)t=x2﹣2x在定義域內(nèi)的減區(qū)間.
再利用二次函數(shù)的性質(zhì)可得函數(shù)t=x2﹣2x在定義域內(nèi)的減區(qū)間為(﹣∞,0),
所以答案是:C.
【考點精析】利用復合函數(shù)單調(diào)性的判斷方法對題目進行判斷即可得到答案,需要熟知復合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,橢圓E: =1(a>b>0)經(jīng)過點A(0,﹣1),且離心率為 . (I)求橢圓E的方程;
(II)經(jīng)過點(1,1),且斜率為k的直線與橢圓E交于不同兩點P,Q(均異于點A),問直線AP與AQ的斜率之和是否為定值,若是,求出這個定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a,b,c分別是△ABC內(nèi)角A,B,C的對邊,sin2B=2sinAsinC. (Ⅰ)若a=b,求cosB;
(Ⅱ)設B=90°,且a= ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=2,且anan+1+an+1﹣2an=0(n∈N+).
(1)求a2、a3、a4的值;
(2)猜想數(shù)列{an}的通項公式,并用數(shù)學歸納法加以證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(n)=1+ + +…+ (n∈N*),計算得f(2)= ,f(4)>2,f(8)> ,f(16)>3,f(32)> ,由此推算:當n≥2時,有( )
A.f(2n)> (n∈N*)
B.f(2n)> (n∈N*)
C.f(2n)> (n∈N*)
D.f(2n)> (n∈N*)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= +lnx在(1,+∞)上是增函數(shù),且a>0.
(1)求a的取值范圍;
(2)求函數(shù)g(x)=ln(1+x)﹣x在[0,+∞)上的最大值;
(3)設a>1,b>0,求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C:(x﹣1)2+(y﹣2)2=25,直線l:(2m+1)x+(m+1)y﹣7m﹣4=0.
(1)求證:直線l恒過定點;
(2)求直線l被圓C截得的弦長最長與最短的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(用空間向量坐標表示解答)已知正三棱柱ABC﹣A1B1C1的各棱長都是4,E是BC的中點,F(xiàn)在CC1上,且CF=1.
(1)求證:EF⊥A1C;
(2)求二面角C﹣AF﹣E的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣t|+ (x>0);
(1)判斷函數(shù)y=f(x)在區(qū)間(0,t]上的單調(diào)性,并證明;
(2)若函數(shù)y=f(x)的最小值為與t無關(guān)的常數(shù),求實數(shù)t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com