【題目】如圖,在三棱錐D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E為BC的中點(diǎn),F在棱AC上,且AF=3FC
(1)求三棱錐D-ABC的體積
(2)求證:平面DAC⊥平面DEF;
(3)若M為DB中點(diǎn),N在棱AC上,且CN=CA,求證:MN∥平面DEF
【答案】(1);(2)見解析;(3)見解析.
【解析】試題分析:(1)根據(jù)等積法,利用求解。(2)由題意得,又所以再線面垂直的判定得,從而。又根據(jù)題意得到,從而,根據(jù)面面垂直的判定可得平面DAC⊥平面DEF。(3)連交于點(diǎn)則得又從而有根據(jù)線面平行的判定定理可得MN∥平面DEF。
試題解析:
(1)因?yàn)?/span>
所以是點(diǎn)到平面的距離,
所以
(2)因?yàn)?/span>是正三角形, 為的中點(diǎn),
所以
因?yàn)?/span>
所以
又因?yàn)?/span>
所以,且,
所以;
因?yàn)?/span>
所以且
所以,
又因?yàn)?/span>, ,
所以
因?yàn)?/span>
所以
(3)連交于點(diǎn)則得
又因?yàn)?/span>
所以在面
又
所以
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)m個(gè)正數(shù)a1 , a2 , …,am(m≥4,m∈N*)依次圍成一個(gè)圓圈.其中a1 , a2 , a3 , …ak﹣1 , ak(k<m,k∈N*)是公差為d的等差數(shù)列,而a1 , am , am﹣1 , …,ak+1 , ak是公比為2的等比數(shù)列.
(1)若a1=d=2,k=8,求數(shù)列a1 , a2 , …,am的所有項(xiàng)的和Sm;
(2)若a1=d=2,m<2015,求m的最大值;
(3)是否存在正整數(shù)k,滿足a1+a2+…+ak﹣1+ak=3(ak+1+ak+2+…+am﹣1+am)?若存在,求出k值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三個(gè)內(nèi)角A,B,C所對的邊分別為a,b,c. , ,且 .
(Ⅰ)求A的大;
(Ⅱ)若a=1, .求S△ABC .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱臺(tái)中, 與分別是棱長為1與2的正三角形,平面平面,四邊形為直角梯形, , , 為中點(diǎn), (, ).
(1)設(shè)中點(diǎn)為, ,求證: 平面;
(2)若到平面的距離為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明想將短軸長為2,長軸長為4的一個(gè)半橢圓形紙片剪成等腰梯形ABDE,且梯形ABDE內(nèi)接于半橢圓,DE∥AB,AB為短軸,OC為長半軸
(1)求梯形ABDE上底邊DE與高OH長的關(guān)系式;
(2)若半橢圓上到H的距離最小的點(diǎn)恰好為C點(diǎn),求底邊DE的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E為BC的中點(diǎn),F在棱AC上,且AF=3FC
(1)求三棱錐D-ABC的體積
(2)求證:平面DAC⊥平面DEF;
(3)若M為DB中點(diǎn),N在棱AC上,且CN=CA,求證:MN∥平面DEF
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某智能手機(jī)制作完成之后還需要依次通過三道嚴(yán)格的審核程序,第一道審核、第二道審核、第三道審核通過的概率分別為,,,每道程序是相互獨(dú)立的,且一旦審核不通過就停止審核,每部手機(jī)只有三道程序都通過才能出廠銷售.
(1)求審核過程中只通過兩道程序的概率;
(2)現(xiàn)有3部該智能手機(jī)進(jìn)入審核,記這3部手機(jī)可以出廠銷售的部數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓過, 兩點(diǎn),且圓心在直線上.
(1)求圓的方程;
(2)若直線過點(diǎn)且被圓截得的線段長為,求的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com