【題目】如圖,在三棱錐D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,EBC的中點(diǎn),F在棱AC上,且AF=3FC

(1)求三棱錐D-ABC的體積

(2)求證:平面DAC⊥平面DEF;

(3)若MDB中點(diǎn),N在棱AC上,且CN=CA,求證:MN∥平面DEF

【答案】(1);(2)見解析;(3)見解析.

【解析】試題分析:(1)根據(jù)等積法利用求解。(2)由題意得,又所以再線面垂直的判定得,從而。又根據(jù)題意得到,從而,根據(jù)面面垂直的判定可得平面DAC⊥平面DEF。(3)于點(diǎn)則得從而有根據(jù)線面平行的判定定理可得MN∥平面DEF。

試題解析:

1)因?yàn)?/span>

所以是點(diǎn)到平面的距離,

所以

2)因?yàn)?/span>是正三角形, 的中點(diǎn),

所以

因?yàn)?/span>

所以

又因?yàn)?/span>

所以,且,

所以;

因?yàn)?/span>

所以

所以,

又因?yàn)?/span>, ,

所以

因?yàn)?/span>

所以

3)連于點(diǎn)則得

又因?yàn)?/span>

所以在面

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,,,平面底面,.分別是的中點(diǎn),求證:

(Ⅰ)底面

(Ⅱ)平面;

(Ⅲ)平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)m個(gè)正數(shù)a1 , a2 , …,am(m≥4,m∈N*)依次圍成一個(gè)圓圈.其中a1 , a2 , a3 , …ak1 , ak(k<m,k∈N*)是公差為d的等差數(shù)列,而a1 , am , am1 , …,ak+1 , ak是公比為2的等比數(shù)列.
(1)若a1=d=2,k=8,求數(shù)列a1 , a2 , …,am的所有項(xiàng)的和Sm;
(2)若a1=d=2,m<2015,求m的最大值;
(3)是否存在正整數(shù)k,滿足a1+a2+…+ak1+ak=3(ak+1+ak+2+…+am1+am)?若存在,求出k值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c. , ,且
(Ⅰ)求A的大;
(Ⅱ)若a=1, .求SABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在棱臺(tái)中, 分別是棱長(zhǎng)為1與2的正三角形,平面平面,四邊形為直角梯形, , 中點(diǎn), , ).

(1)設(shè)中點(diǎn)為 ,求證: 平面;

(2)若到平面的距離為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小明想將短軸長(zhǎng)為2,長(zhǎng)軸長(zhǎng)為4的一個(gè)半橢圓形紙片剪成等腰梯形ABDE,且梯形ABDE內(nèi)接于半橢圓,DEAB,AB為短軸,OC為長(zhǎng)半軸

(1)求梯形ABDE上底邊DE與高OH長(zhǎng)的關(guān)系式;

(2)若半橢圓上到H的距離最小的點(diǎn)恰好為C點(diǎn),求底邊DE的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,EBC的中點(diǎn),F在棱AC上,且AF=3FC

(1)求三棱錐D-ABC的體積

(2)求證:平面DAC⊥平面DEF;

(3)若MDB中點(diǎn),N在棱AC上,且CN=CA,求證:MN∥平面DEF

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某智能手機(jī)制作完成之后還需要依次通過三道嚴(yán)格的審核程序,第一道審核、第二道審核、第三道審核通過的概率分別為,,每道程序是相互獨(dú)立的,且一旦審核不通過就停止審核,每部手機(jī)只有三道程序都通過才能出廠銷售.

(1)求審核過程中只通過兩道程序的概率;

(2)現(xiàn)有3部該智能手機(jī)進(jìn)入審核,記這3部手機(jī)可以出廠銷售的部數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓, 兩點(diǎn),且圓心在直線.

1)求圓的方程;

2)若直線過點(diǎn)且被圓截得的線段長(zhǎng)為,求的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案