已知O,N,P在△ABC所在平面內(nèi),且|
OA
|=|
OB
|=|
OC
|,
NA
+
NB
+
NC
=
0
,且
PA
PB
=
PB
PC
=
PC
PA
,則點O,N,P依次是△ABC的(  )
分析:據(jù)O到三角形三個頂點的距離相等,得到O是三角形的外心,根據(jù)所給的四個選項,第一個判斷為外心的只有③④兩個選項,只要判斷第三個條件可以得到三角形的什么心就可以,移項相減,得到垂直,即得到P是三角形的垂心.
解答:解:∵|
.
OA
|=|
.
OB
|=|
.
OC
|,∴O到三角形三個頂點的距離相等,
∴O是三角形的外心,
根據(jù)所給的四個選項,第一個判斷為外心的只有C,D兩個選項,
∴只要判斷第三個條件可以得到三角形的內(nèi)心或垂心就可以,
.
PA
.
PB
=
.
PB
.
PC
=
.
PC
.
PA
,∴
PB
PA
-
PC
)=0,
PB
CA
=0,∴
PB
CA

同理得到另外兩個向量都與邊垂直,
得到P是三角形的垂心,
故選C.
點評:本小題主要考查向量的數(shù)量積的運算法則、三角形五心等基礎(chǔ)知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想,本題是一個考查的向量的知識點比較全面的題目,把幾種三角形的心總結(jié)的比較全面,解題時注意向量的有關(guān)定律的應(yīng)用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知O、N、P在△ABC所在的平面內(nèi),且|
OA
|=|
OB
|=|
OC
|
,
PA
PB
=
PB
PC
=
PC
PA
,
NA
+
NB
+
NC
=
0
,則點O、P、N依次是△ABC的( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009寧夏海南卷理)已知O,N,P在所在平面內(nèi),且,且,則點O,N,P依次是的                                                (   )

A.重心 外心 垂心                     B.重心 外心 內(nèi)心  

C.外心 重心 垂心                     D.外心 重心 內(nèi)心

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆山東省高一下學期期中考試數(shù)學試卷(解析版) 題型:選擇題

已知O,N,P在△ABC所在平面內(nèi),且||=||=||,=0,且···,則點O,N,P依次是△ABC的(  )

A.重心 外心 垂心

B.重心 外心 內(nèi)心

C.外心 重心 垂心

D.外心 重心 內(nèi)心

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010屆高三數(shù)學每周精析精練:平面向量 題型:選擇題

 已知O,N,P在所在平面內(nèi),且,且,則點O,N,P依次是

     (A)重心 外心 垂心   (B)重心 外心 內(nèi)心  

(C)外心 重心 垂心   (D)外心 重心 內(nèi)心

(注:三角形的三條高線交于一點,此點為三角型的垂心)

 

查看答案和解析>>

同步練習冊答案