精英家教網 > 高中數學 > 題目詳情
4.集合A={x|x2-5x+4<0},B={x||a-x|<1},則“B⊆A”是“a∈(2,3)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 分別求出關于A、B的不等式,根據集合的包含關系判斷即可.

解答 解:A={x|x2-5x+4<0}=(1,4),
B={x||a-x|<1}=(a-1,a+1),
若“B⊆A”,則$\left\{\begin{array}{l}{a-1≥1}\\{a+1≤4}\end{array}\right.$,
解得:2≤a≤3,
故“B⊆A”是“a∈(2,3)”的必要不充分條件,
故選:B.

點評 本題考查了充分必要條件,考查集合的包含關系,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

14.設數列{an}的前n項和為Sn.已知2Sn=3n+3,則{an}的通項公式為${a_n}=\left\{\begin{array}{l}3,\;\;\;\;n=1\\{3^{n-1}},n>1\end{array}\right.$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.在直角坐標系xOy中,曲線C1的參數方程為$\left\{\begin{array}{l}{x=\sqrt{2}cosα}\\{y=\sqrt{2}+\sqrt{2}sinα}\end{array}\right.$(α為參數),M是C1上的動點,P點滿足$\overrightarrow{OP}$=2$\overrightarrow{OM}$,P點的軌跡為曲線C2
(1)求C2的方程;
(2)在以O為極點,x軸的正半軸為極軸的極坐標系中,射線θ=$\frac{π}{4}$與C1的異于極點的交點為A,與C2的異于極點的交點為B,求|AB|.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

12.已知f(x)是定義在R上的函數,若對于任意的x,y∈R,都有f(x+y)=f(x)+f(y),且x>0,有f(x)>0.
(1)求證:f(0)=0;
(2)判斷函數的奇偶性;
(3)判斷函數f(x)在R上的單調性,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.如圖,已知一個八面體的各條棱長均為1,四邊形ABCD 為正方形,則下列命題中的假命題是( 。
A.不平行的兩條棱所在的直線所成的角是60o或90o
B.四邊形AECF是正方形
C.點A到平面BCE的距離為$\frac{\sqrt{6}}{3}$
D.該八面體的頂點不會在同一個球面上.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.已知復數(1+i)z-2=i,則復數z在復平面上對應的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.如圖,圓O1和圓O2的半徑都是1,|O1O2|=4,過動點P分別作圓O1和圓O2的切線PM、PN(M、N為切點),使得|PM|=$\sqrt{2}$|PN|,試建立適當平面直角坐標系,求動點P的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.求下列函數f(x)的解析式.
(1)已知f(1-x)=2x2-x+1,求f(x);
(2)已知一次函數f(x)滿足f(f(x))=4x-1,求f(x).

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.已知a.b.c.d成等比數列,且曲線y=x2-2x+3的頂點是(b,c),則a+d等于( 。
A.3B.2C.$\frac{9}{2}$D.-2

查看答案和解析>>

同步練習冊答案