分析 通過拋物線方程可知焦點F($\frac{1}{4}$,0),一方面通過點A在x軸上方可知|FA|cosθ=xA-$\frac{1}{4}$,一方面利用拋物線定義可知|FA|=xA+$\frac{1}{4}$,聯(lián)立消去xA可知|FA|=$\frac{\frac{1}{2}}{1-cosθ}$,利用θ∈[$\frac{π}{4}$,π)計算即得結(jié)論.
解答 解:∵拋物線方程為y2=x,
∴其焦點F($\frac{1}{4}$,0),
∵點A在x軸上方,
∴|FA|cosθ=xA-$\frac{1}{4}$,
由拋物線定義可知:|FA|=xA+$\frac{1}{4}$,
∴|FA|=$\frac{\frac{1}{2}}{1-cosθ}$,
∵θ∈[$\frac{π}{4}$,π),
∴cosθ∈(-1,$\frac{\sqrt{2}}{2}$],
∴|FA|=$\frac{\frac{1}{2}}{1-cosθ}$∈($\frac{1}{4}$,1+$\frac{\sqrt{2}}{2}$],
故答案為:($\frac{1}{4}$,1+$\frac{\sqrt{2}}{2}$].
點評 本題考查拋物線的簡單性質(zhì),注意解題方法的積累,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{πR}{6}$ | B. | $\frac{πR}{3}$ | C. | $\frac{πR}{2}$ | D. | πR |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | c>a>b | B. | c>b>a | C. | a>b>c | D. | b>a>c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,+∞) | B. | [2,+∞) | C. | (2,3] | D. | (-∞,3] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com