【題目】已知函數(shù)f(x)=ax3﹣6x2+1,若f(x)存在唯一的零點x0 , 且x0>0,則a的取值范圍是(
A.(﹣∞,﹣4)
B.(4,+∞)
C.(﹣∞,﹣4
D.(4 ,+∞)

【答案】C
【解析】解:當a=0時,f(x)=﹣12x2+1=0,解得x=± ,函數(shù)f(x)有兩個零點,不符合題意,應舍去; 當a>0時,令f′(x)=3ax2﹣12x=3ax(x﹣ )=0,解得x=0或x= >0,列表如下:

x

(﹣∞,0)

0

(0,

,+∞)

f′(x)

+

0

0

+

f(x)

單調(diào)遞增

極大值

單調(diào)遞減

極小值

單調(diào)遞增

∵x→﹣∞,f(x)→﹣∞,而f(0)=1>0,∴存在x<0,使得f(x)=0,
不符合條件:f(x)存在唯一的零點x0 , 且x0>0,應舍去.
當a<0時,f′(x)=3ax2﹣12x=3ax(x﹣ )=0,解得x=0或x= <0,列表如下:

x

(﹣∞,

,0)

0

(0,+∞)

f′(x)

0

+

0

f(x)

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

而f(0)=1>0,x→+∞時,f(x)→﹣∞,∴存在x0>0,使得f(x0)=0,
∵f(x)存在唯一的零點x0 , 且x0>0,∴極小值f( )=a( 3﹣6( 2+1>0,
化為a2>32,
∵a<0,∴a<﹣4
綜上可知:a的取值范圍是(﹣∞,﹣4 ).
故選:C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖是2012年在某大學自主招生考試的面試中,七位評委為某考生打出的分數(shù)的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均數(shù)和方差分別為(

7

9

8

4

4

6

4

7

9

3


A.84,4.84
B.84,1.6
C.85,1.6
D.85,4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)當時,求函數(shù)的極值;

(2)設,對任意,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓右頂點與右焦點的距離為,短軸長為

(I)求橢圓的方程;

)過左焦點F的直線與橢圓分別交于A、B兩點,若三角形OAB的面積為求直線AB的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,矩形中, ,將沿折起,得到如圖所示的四棱錐,其中.

(1)證明:平面平面

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設m∈R,復數(shù)z=(m2﹣3m﹣4)+(m2+3m﹣28)i,其中i為虛數(shù)單位.
(1)當m為何值時,復數(shù)z是虛數(shù)?
(2)當m為何值時,復數(shù)z是純虛數(shù)?
(3)當m為何值時,復數(shù)z所對應的點在復平面內(nèi)位于第四象限?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),曲線y=f(x)在點(1,f(1))處的切線與x軸平行. (Ⅰ)求k的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)設g(x)=(x2+x)f′(x),其中f′(x)為f(x)的導函數(shù).證明:對任意x>0,g(x)<1+e2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,地面上有一豎直放置的圓形標志物,圓心為C,與地面的接觸點為G.與圓形標志物在同一平面內(nèi)的地面上點P處有一個觀測點,且PG=50m.在觀測點正前方10m處(即PD=10m)有一個高為10m(即ED=10m)的廣告牌遮住了視線,因此在觀測點所能看到的圓形標志的最大部分即為圖中從A到F的圓。

(1)若圓形標志物半徑為25m,以PG所在直線為x軸,G為坐標原點,建立直角坐標系,求圓C和直線PF的方程;
(2)若在點P處觀測該圓形標志的最大視角(即∠APF)的正切值為 ,求該圓形標志物的半徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知棱長都相等的正三棱錐內(nèi)接于一個球,某學生畫出四個過球心的平面截球與正三棱錐所得的圖形,如圖所示,則( )

A.以上四個圖形都是正確的
B.只有(2)(4)是正確的
C.只有(4)是錯誤的
D.只有(1)(2)是正確的

查看答案和解析>>

同步練習冊答案