【題目】設(shè)拋物線C:y2=2px(p>0)的焦點為F,準(zhǔn)線為l,AB為過焦點F且垂直于x軸的拋物線C的弦,已知以AB為直徑的圓經(jīng)過點(-1,0).
(1)求p的值及該圓的方程;
(2)設(shè)M為l上任意一點,過點M作C的切線,切點為N,證明:MF⊥NF.
【答案】(1)p=2. (x-1)2+y2=4.(2)見解析
【解析】
(1)根據(jù)題意知,點的坐標(biāo)為(,±p),利用直角三角形斜邊上的中線等于斜邊的一半列出關(guān)于的方程,求出,求得圓心F和直徑即可;
(2)易知直線MN的斜率存在且不為0,設(shè)M(-1,y0),MN的方程為y=k(x+1)+y0與拋物線方程聯(lián)立得到關(guān)于的一元二次方程,由判別式得到的關(guān)系式,將的表達式代入關(guān)于的一元二次方程和拋物線方程得到點的坐標(biāo),利用平面向量垂直的坐標(biāo)表示求解即可.
(1)由題意知,點的坐標(biāo)為(,±p),
因為以AB為直徑的圓經(jīng)過點(-1,0),
所以p=-(-1),解得p=2,
所以所求圓的圓心為直徑AB的中點F(1,0),直徑,
所以所求圓的方程為(x-1)2+y2=4.
(2)證明:易知直線MN的斜率存在且不為0,
設(shè)M(-1,y0),MN的方程為y=k(x+1)+y0,代入C的方程,
得ky2-4y+4(y0+k)=0,
令Δ=16-16k(y0+k)=0,得y0+k=,
所以ky2-4y+4(y0+k)==0,解得y=,
將y=代入C的方程,得x=,即N點的坐標(biāo)為().,
所以=(-2,y0),=(-1,),
·=2-+y0·=2-+(-k)·=0,
故MF⊥NF.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)若直線與曲線,的交點分別為、(、異于原點),當(dāng)斜率時,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】移動支付(支付寶支付,微信支付等)開創(chuàng)了新的支付方式,使電子貨幣開始普及,為了了解習(xí)慣使用移動支付方式是否與年齡有關(guān),對某地200人進行了問卷調(diào)查,得到數(shù)據(jù)如下:60歲以上的人群中,習(xí)慣使用移動支付的人數(shù)為30人;60歲及以下的人群中,不習(xí)慣使用移動支付的人數(shù)為40人.已知在全部200人中,隨機抽取一人,抽到習(xí)慣使用移動支付的人的概率為0.6.
(1)完成如下的列聯(lián)表,并判斷是否有的把握認(rèn)為習(xí)慣使用移動支付與年齡有關(guān),并說明理由.
習(xí)慣使用移動支付 | 不習(xí)慣使用移動支付 | 合計(人數(shù)) | |
60歲以上 | |||
60歲及以下 | |||
合計(人數(shù)) | 200 |
(2)在習(xí)慣使用移動支付的60歲以上的人群中,每月移動支付的金額如下表:
每月支付金額 | 300以上 | |||
人數(shù) | 10 | 20 | 30 |
現(xiàn)采用分層抽樣的方法從中抽取9人,再從這9人中隨機抽取4人,記4人中每月移動支付金額超過3000元的人數(shù)為,求的分布列及數(shù)學(xué)期望.
附:,其中.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市春節(jié)大酬賓,購物滿100元可參加一次抽獎活動,規(guī)則如下:顧客將一個半徑適當(dāng)?shù)男∏蚍湃肴鐖D所示的容器正上方的人口處,小球在自由落下的過程中,將3次遇到黑色障礙物,最后落入A袋或B袋中,顧客相應(yīng)獲得袋子里的獎品.已知小球每次遇到黑色障礙物時,向左向右下落的概率都為.若活動當(dāng)天小明在該超市購物消費108元,按照活動規(guī)則,他可參加一次抽獎,則小明獲得A袋中的獎品的概率為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=sin 3x-cos 3x+1的圖象向左平移個單位長度,得到函數(shù)g(x)的圖象,給出下列關(guān)于g(x)的結(jié)論:
①它的圖象關(guān)于直線x=對稱;
②它的最小正周期為;
③它的圖象關(guān)于點(,1)對稱;
④它在[]上單調(diào)遞增.
其中所有正確結(jié)論的編號是( )
A.①②B.②③C.①②④D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)若時,求證:當(dāng)時,;
(2)若函數(shù)有4個零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是橢圓的兩個焦點,是橢圓上一點,當(dāng)時,有.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過橢圓右焦點的動直線與橢圓交于兩點,試問在鈾上是否存在與不重合的定點,使得恒成立?若存在,求出定點的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的焦點的坐標(biāo)為, 的坐標(biāo)為,且經(jīng)過點, 軸.
(1)求橢圓的方程;
(2)設(shè)過的直線與橢圓交于兩不同點,在橢圓上是否存在一點,使四邊形為平行四邊形?若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com