【題目】以下四個命題中錯誤的是(

A.若樣本、、、的平均數(shù)是,方差是,則數(shù)據(jù)、、、的平均數(shù)是,方差是

B.的充分不必要條件

C.樣本頻率分布直方圖中的小矩形的面積就是對應(yīng)組的頻率

D.拋擲一顆質(zhì)地均勻的骰子,事件“向上點數(shù)不大于”和事件“向上點數(shù)不小于”是對立事件

【答案】A

【解析】

利用平均數(shù)和方差公式可判斷A選項的正誤;解不等式,利用集合的包含關(guān)系可判斷B選項的正誤;根據(jù)頻率直方圖的概念可判斷C選項的正誤;根據(jù)對立事件的概念可判斷D選項的正誤.綜合可得出結(jié)論.

對于A選項,樣本、、、的平均數(shù)為,

方差為,

數(shù)據(jù)、、的平均數(shù)是,

方差為A選項錯誤;

對于B選項,解不等式,得,

所以,的充分不必要條件,B選項正確;

對于C選項,由頻率分布直方圖的概念可知,樣本頻率分布直方圖中的小矩形的面積就是對應(yīng)組的頻率,C選項正確;

對于D選項,拋擲一顆質(zhì)地均勻的骰子,事件“向上點數(shù)不大于”即為:向上的點數(shù)為,

事件“向上點數(shù)不小于”即為:向上的點數(shù)為,

這兩個事件互為對立事件,D選項正確.

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若,求函數(shù)的最小值;

2)若對于任意恒成立,求的取值范圍;

3)若,求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對同一類的,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項參賽作品預(yù)測如下:

甲說:“是作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“兩項作品未獲得一等獎”;

丁說:“是作品獲得一等獎”.

若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點為,拋物線上存在一點 到焦點的距離等于

(1)求拋物線的方程;

(2)已知點在拋物線上且異于原點,點為直線上的點,且.求直線與拋物線的交點個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,直線的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)若曲線上一點的極坐標為,且過點,求的普通方程和的直角坐標方程;

(2)設(shè)點,的交點為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方體的棱長為1,點是棱上的動點,是棱上一點,.

(1)求證:;

(2)若直線平面,試確定點的位置,并證明你的結(jié)論;

(3)設(shè)點在正方體的上底面上運動,求總能使垂直的點所形成的軌跡的長度.(直接寫出答案)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的個數(shù)是(

①球的半徑是球面上任意一點與對球心的連線;

②球面上任意兩點的連線是球的直徑;

③用一個平面截一個球,得到的截面是一個圓;

④用一個平面截一個球,得到的截面是一個圓面;

⑤以半圓的直徑所在直線為軸旋轉(zhuǎn)形成的曲面叫做球;

⑥空間中到定點的距離等于定長的所有的點構(gòu)成的曲面是球面.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列中,已知.

1)求數(shù)列的通項公式;

2)求證:數(shù)列是等差數(shù)列;

3)設(shè)數(shù)列滿足的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于回歸分析,下列說法錯誤的是(

A.在殘差圖中,縱坐標表示殘差

B.若散點圖中的一組點全部位于直線的圖象上,則相關(guān)系數(shù)

C.若殘差平方和越小,則相關(guān)指數(shù)越大

D.在回歸分析中,變量間的關(guān)系若是非確定關(guān)系,那么因變量不能由自變量唯一確定

查看答案和解析>>

同步練習(xí)冊答案