已知過(guò)點(diǎn)的直線與圓相交于兩點(diǎn),若弦的長(zhǎng)為,求直線的方程;

 

【答案】

.............12分

【解析】把圓,寫(xiě)成標(biāo)準(zhǔn)式得。所以圓心,半徑。利用半徑,弦的長(zhǎng)的二分之一為4,得圓心到直線的距離為3,討論過(guò)點(diǎn)的直線斜率是否存在,可求出直線的方程。

解:若直線的斜率不存在,則的方程為,此時(shí)有,弦,所以合題意...............2分

故設(shè)直線的方程為,即............4分

將圓的方程寫(xiě)成標(biāo)準(zhǔn)式得

所以圓心,半徑.....................6分

圓心到直線的距離

,............................10分

所求直線的方程為.............12分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分12分)

已知?jiǎng)訄A過(guò)點(diǎn),且與圓相內(nèi)切.

(1)求動(dòng)圓的圓心的軌跡方程;

(2)設(shè)直線(其中與(1)中所求軌跡交于不同兩點(diǎn),D,與雙曲線交于不同兩點(diǎn),問(wèn)是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分12分)

已知?jiǎng)訄A過(guò)點(diǎn),且與相內(nèi)切.

   (1)求動(dòng)圓的圓心的軌跡方程;

   (2)設(shè)直線(其中與(1)中所求軌跡交于不同兩點(diǎn),D,與雙曲線交于不同兩點(diǎn),問(wèn)是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:正定中學(xué)2010高三下學(xué)期第一次考試(數(shù)學(xué)文) 題型:解答題

(本題滿分12分)
已知?jiǎng)訄A過(guò)點(diǎn),且與圓相內(nèi)切.
(1)求動(dòng)圓的圓心的軌跡方程;
(2)設(shè)直線(其中與(1)中所求軌跡交于不同兩點(diǎn)D,與雙曲線交于不同兩點(diǎn),問(wèn)是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:河北省2010年高三一模模擬(三)數(shù)學(xué)文 題型:解答題

(本題滿分12分)

已知?jiǎng)訄A過(guò)點(diǎn),且與圓相內(nèi)切.

   (1)求動(dòng)圓的圓心的軌跡方程;

   (2)設(shè)直線(其中與(1)中所求軌跡交于不同兩點(diǎn),D,與雙曲線交于不同兩點(diǎn),問(wèn)是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:正定中學(xué)2010高三下學(xué)期第一次考試(數(shù)學(xué)文) 題型:解答題

(本題滿分12分)

已知?jiǎng)訄A過(guò)點(diǎn),且與圓相內(nèi)切.

(1)求動(dòng)圓的圓心的軌跡方程;

(2)設(shè)直線(其中與(1)中所求軌跡交于不同兩點(diǎn),D,與雙曲線交于不同兩點(diǎn),問(wèn)是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案