如圖,四棱錐
S=ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,點(diǎn)E是SD上的點(diǎn),且DE=λa(0<λ≤1).(Ⅰ)求證:對(duì)任意的λ∈(0,1),都有AC⊥BE;
(Ⅱ)若二面角C-AE-D的大小為60°C,求λ的值.
(Ⅰ)證發(fā)1:連接BD,由底面是正方形可得AC⊥BD. ∵ SD⊥平面ABCD,∴BD是BE在平面ABCD上的射影,由三垂線定理得 AC⊥BE.(Ⅱ)解法1:∵SD⊥平面ABCD,CD平面ABCD,∴SD⊥CD. 又底面 ABCD是正方形,∴CD⊥AD,又SD∩AD=D,∴CD⊥平面SAD.過點(diǎn) D在平面SAD內(nèi)做DF⊥AE于F,連接CF,則CF⊥AE,故∠ CFD是二面角C-AE-D的平面角,即∠CFD=60°在 Rt△ADE中,∵AD=α,DE=λα,AE=α.于是, DF=在 Rt△CDF中,由cot60°=得,即= 3λ,λ∈(0,1],解得λ= 證法 2:以D為原點(diǎn),DA,、的方向分別作為x,y,z軸的正方向建如圖
|
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:044
如圖,四棱錐S—ABCD中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,AB=AD=a,DC=2a,SD=a,SD⊥平面ABCD.
。1)證明:該四棱錐的四個(gè)側(cè)面都是直角三角形;
。2)設(shè)M∈SA,SM=x,平面CDMSB=P,證明四邊形CDMP也是直角梯形,并用a與x表示;
。3)x為何值時(shí),CM最短,并求出其最短距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年普通高等學(xué)校招生全國(guó)統(tǒng)一考試、文科數(shù)學(xué)(全國(guó)一) 題型:044
如圖,四棱錐S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的一點(diǎn),平面EDC⊥平面SBC.
(Ⅰ)證明:SE=2EB;
(Ⅱ)求二面角A-DC-C的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江蘇省某重點(diǎn)中學(xué)2012屆高三上學(xué)期11月練習(xí)數(shù)學(xué)試題 題型:044
如圖,四棱錐S-ABCD中,M是SB的中點(diǎn),AB∥CD,BC⊥CD,且AB=BC=2,CD=SD=1,又SD⊥面SAB.
(1)證明:CD⊥SD;
(2)證明:CM⊥面SAD;
(3)求四棱錐S-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年普通高等學(xué)校招生全國(guó)統(tǒng)一考試全國(guó)卷數(shù)學(xué)文科 題型:044
如圖,四棱錐S-ABCD中,AB∥CD,BC⊥CD,側(cè)面SAB為等邊三角形.AB=BC=2,CD=SD=1.
(Ⅰ)證明:SD⊥平面SAB
(Ⅱ)求AB與平面SBC所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:山東省鄆城一中2012屆高三上學(xué)期寒假作業(yè)數(shù)學(xué)理科試卷(3) 題型:044
如圖,四棱錐S-ABCD中,AB∥CD,BC⊥CD,側(cè)面SAB為等邊三角形,AB=BC=2,CD=SD=1.
(Ⅰ)證明:SD⊥平面SAB;
(Ⅱ)求AB與平面SBC所成角的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com