過(guò)直線l:y=2x上一點(diǎn)P作圓C:(x-8)2+(y-1)2=2的切線l1,l2,若l1,l2關(guān)于直線l對(duì)稱(chēng),則點(diǎn)P到圓心C的距離為   
【答案】分析:由圓的方程找出圓心坐標(biāo),經(jīng)過(guò)判定發(fā)現(xiàn),圓心不在已知直線上,由對(duì)稱(chēng)性可知,只有直線y=2x上的特殊點(diǎn),這個(gè)點(diǎn)與圓心連線垂直于直線y=2x,從這點(diǎn)做切線才能關(guān)于直線y=2x對(duì)稱(chēng).由直線y=2x的斜率,利用兩直線垂直時(shí)斜率的乘積為-1求出該點(diǎn)與圓心連線方程的斜率,由圓心坐標(biāo)和求出的斜率寫(xiě)出此直線的方程,與已知直線方程聯(lián)立求出該點(diǎn)的坐標(biāo),然后利用兩點(diǎn)間的距離公式即可求出此時(shí)這個(gè)點(diǎn)到圓心C的距離.
解答:解:顯然圓心(8,1)不在直線y=2x上.
由對(duì)稱(chēng)性可知,只有直線y=2x上的特殊點(diǎn),這個(gè)點(diǎn)與圓心連線垂直于直線y=2x,從這點(diǎn)做切線才能關(guān)于直線y=2x對(duì)稱(chēng).
所以該點(diǎn)與圓心連線所在的直線方程為:y-1=-(x-8),即x+2y-10=0,
與y=2x聯(lián)立可求出該點(diǎn)坐標(biāo)為(2,4),
所以該點(diǎn)到圓心的距離為:=3
故答案為:3
點(diǎn)評(píng):此題考查了直線與圓的位置關(guān)系,以及兩點(diǎn)間的距離公式.由對(duì)稱(chēng)性得到該點(diǎn)與圓心連線所在的直線方程與直線l垂直是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)直線l:y=2x上一點(diǎn)P作圓C:(x-8)2+(y-1)2=2的切線l1,l2,若l1,l2關(guān)于直線l對(duì)稱(chēng),則點(diǎn)P到圓心C的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)直線l:y=2x上一點(diǎn)P作圓C:x2+y2-16x-2y+63=o的切線l1,l2,若l1,l2關(guān)于直線l對(duì)稱(chēng),則點(diǎn)P到圓心C的距離為
3
5
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)直線l:y=2x上一點(diǎn)P作圓C:(x-8)2+(y-1)2=2的切線l1、l2,若l1、l2關(guān)于直線l對(duì)稱(chēng),則點(diǎn)P到經(jīng)過(guò)原點(diǎn)和圓心C的直線的距離為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)直線l:y=2x上一點(diǎn)P作圓M:(x-3)2+(y-4)2=
15
的兩條切線l1,l2,A,B為切點(diǎn),若直線l1,l2關(guān)于直線l對(duì)稱(chēng),則∠APB=
60°
60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)直線l:y=2x上一點(diǎn)P做圓M:(x-3)2+(y-2)2=
45
的兩條切線l1,l2,A,B為切點(diǎn),當(dāng)直線l1,l2關(guān)于直線l對(duì)稱(chēng)時(shí),則∠APB=
60°
60°

查看答案和解析>>

同步練習(xí)冊(cè)答案