滿足,則方程解的個(gè)數(shù)

A.              B.            C.             D.

 

【答案】

A

【解析】,無(wú)論a>0或a<0,f(x)都為單調(diào)函數(shù),又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912110556201506/SYS201207091211241870304997_DA.files/image002.png">且,所以方程解的個(gè)數(shù)為1。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列各組命題中,滿足“‘p或q’為真、‘p且q’為假、‘非p’為真”的是( 。
A、p:0=φ;q:0∈φ
B、p:在△ABC中,若cos2A=cos2B,則A=B;q:y=sinx在第一象限是增函數(shù)
C、p:a+b≥2
ab
(a,b∈R)
;q:不等式|x|>x的解集是(-∞,0)
D、p:圓(x-1)2+(y-2)2=1的面積被直線x=1平分;q:橢圓
x2
4
+
y2
3
=1
的一條準(zhǔn)線方程是x=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定集合An={1,2,3,…,n},映射f:An→An滿足:
①當(dāng)i,j∈An,i≠j時(shí),f(i)≠f(j);
②任取m∈An,若m≥2,則有m∈{f(1),f(2),..,f(m)}.
則稱映射f:An→An是一個(gè)“優(yōu)映射”.例如:用表1表示的映射f:A3→A3是一個(gè)“優(yōu)映射”.
表1                               
i 1 2 3
f(i) 2 3 1
表2
i 1 2 3 4
f(i) 3
(1)已知表2表示的映射f:A4→A4是一個(gè)優(yōu)映射,請(qǐng)把表2補(bǔ)充完整(只需填出一個(gè)滿足條件的映射);
(2)若映射f:A10→A10是“優(yōu)映射”,且方程f(i)=i的解恰有6個(gè),則這樣的“優(yōu)映射”的個(gè)數(shù)是
84
84

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)定義:若存在常數(shù)k,使得對(duì)定義域D內(nèi)的任意兩個(gè)不同的實(shí)數(shù)x1,x2,均有:|f(x1)-f(x2)|≤k|x1-x2|成立,則稱f(x)在D上滿足利普希茨(Lipschitz)條件.
(1)試舉出一個(gè)滿足利普希茨(Lipschitz)條件的函數(shù)及常數(shù)k的值,并加以驗(yàn)證;
(2)若函數(shù)f(x)=
x+1
在[1,+∞)
上滿足利普希茨(Lipschitz)條件,求常數(shù)k的最小值;
(3)現(xiàn)有函數(shù)f(x)=sinx,請(qǐng)找出所有的一次函數(shù)g(x),使得下列條件同時(shí)成立:
①函數(shù)g(x)滿足利普希茨(Lipschitz)條件;
②方程g(x)=0的根t也是方程f(
4
)=
2
sin(
2
-
π
4
)=-
2
cos
π
4
=-1
;
③方程f(g(x))=g(f(x))在區(qū)間[0,2π)上有且僅有一解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)=ax3+ax+2(a≠0)滿足f(-1)>1且f(1)<1,則方程f(x)=1解的個(gè)數(shù)(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案