在等差數(shù)列中,,其前項(xiàng)和為,等比數(shù)列 的各項(xiàng)均為正數(shù),,公比為,且,.
(1)求與; (2)設(shè)數(shù)列滿足,求的前項(xiàng)和.
(1),;(2)。
【解析】
試題分析:(1)設(shè)的公差為,則,然后代入,
可得關(guān)于的方程,解出即可得到與;(2)由(1)可知,
,然后利用裂項(xiàng)相消求和,
試題解析:(1)設(shè)的公差為,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2014111719531890344855/SYS201411171953225442350070_DA/SYS201411171953225442350070_DA.015.png">所以
解得 或(舍),.故 ,.
(2)由(1)可知,所以.
故
考點(diǎn):(1)等差(比)數(shù)列的通項(xiàng)公式;(2)裂項(xiàng)相消進(jìn)行數(shù)列求和。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆內(nèi)蒙古高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
拋擲一枚均勻的骰子所得的樣本空間為Ω={1,2,3,4,5,6},令事件A={2,3,5},B={1,2,4,5,6},則P(A|B)等于( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆云南省高二第二學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知x,y取值如下表:
x | 0 | 1 | 4 | 5 | 6 | 8 |
y | 1.3 | 1.8 | 5.6 | 6.1 | 7.4 | 9.3 |
從所得的散點(diǎn)圖分析可知:y與x線性相關(guān),且 =0.95x+a,則a=( ).
A.1.30 B.1.45 C.1.65 D.1.80
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆云南省高二下學(xué)期第二次月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知雙曲線的漸近線方程為,則以它的頂點(diǎn)為焦點(diǎn),焦點(diǎn)為頂點(diǎn)的橢圓的離心率等于( )
A. B. C. D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆云南省高二下學(xué)期第二次月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知x,y的取值如下表:從散點(diǎn)圖可以看出y與x線性相關(guān),且回歸方程為,則( )
x | 0 | 1 | 3 | 4 |
y | 2.2 | 4.3 | 4.8 | 6.7 |
A. 3.25 B. 2.6 C. 2.2 D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆云南省高二下學(xué)期第二次月考文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知向量、、都是單位向量,且,則的值為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆云南省高二下學(xué)期第二次月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知,,為三條不同的直線,,為兩個不同的平面,下列命題中正確的是( )
A. ⊥,⊥,且,則⊥.
B.若平面內(nèi)有不共線的三點(diǎn)到平面的距離相等,則.
C.若,,則.
D.若,,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆云南省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
函數(shù)的圖像恒過定點(diǎn)A,若點(diǎn)A在直線上,其中的最小值為( )
A.6 B.8 C.4 D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆云南省云龍縣高二下學(xué)期期末考試試卷理科數(shù)學(xué)試卷(解析版) 題型:填空題
已知單位向量和的夾角為,則= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com