【題目】已知函數(shù)f(x)=x3+ax2+bx+c有兩個(gè)極值點(diǎn)x1 , x2 , 若x2<f(x1)<x1 , 則關(guān)于x的方程3(f(x))2+2af(x)+b=0的不同實(shí)根個(gè)數(shù)可能為( )
A.3,4,5
B.4,5,6
C.2,4,5
D.2,3,4
【答案】D
【解析】解:∵函數(shù)f(x)=x3+ax2+bx+c有兩個(gè)極值點(diǎn)x1 , x2 , ∴f′(x)=3x2+2ax+b=0有兩個(gè)不相等的實(shí)數(shù)根,
∴△=4a2﹣12b>0.解得x1=﹣ + ,x2=﹣ ﹣ ,
而方程3(f(x))2+2af(x)+b=0的△1=△>0,
∴此方程有兩解且f(x)=x1或x2
由x2<f(x1)<x1 ,
畫出如圖,由f(x1)<x1 ,
可知方程f(x)=x1有3個(gè)根.
方程f(x)=x2有1個(gè)根,
則原方程共有4個(gè)根.
討論若x1=f(x2),即有f(x)=x1有2個(gè)根,
方程f(x)=x2有1個(gè)根,
則原方程共有3個(gè)根;
若x1>f(x2),即有f(x)=x1有1個(gè)根,
方程f(x)=x2有1個(gè)根,
則原方程共有2個(gè)根.
即有原方程可能有2,3,4個(gè)根.
故選:D.
【考點(diǎn)精析】掌握函數(shù)的極值與導(dǎo)數(shù)是解答本題的根本,需要知道求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}的前n項(xiàng)和為Sn , Sn=2an﹣n(n∈N*).
(1)求證:數(shù)列{an+1}成等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)數(shù)列{an}中是否存在連續(xù)三項(xiàng)可以構(gòu)成等差數(shù)列?若存在,請(qǐng)求出一組適合條件的三項(xiàng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a∈R,函數(shù)f(x)=ln(x+a)﹣x,曲線y=f(x)與x軸相切. (Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)是否存在實(shí)數(shù)m使得 恒成立?若存在,求實(shí)數(shù)m的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (α為參數(shù)).以點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ﹣ )=2 (Ⅰ)將直線l化為直角坐標(biāo)方程;
(Ⅱ)求曲線C上的一點(diǎn)Q 到直線l 的距離的最大值及此時(shí)點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別是AD,DD1的中點(diǎn),AB=4,則過B,E,F(xiàn)的平面截該正方體所得的截面周長為( )
A.6 +4
B.6 +2
C.3 +4
D.3 +2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (a,b∈R)在點(diǎn) (2,f(2)) 處切線的斜率為﹣ ﹣ln 2,且函數(shù)過點(diǎn)(4, ). (Ⅰ)求a、b 的值及函數(shù) f (x)的單調(diào)區(qū)間;
(Ⅱ)若g(x)= (k∈N*),對(duì)任意的實(shí)數(shù)x0>1,都存在實(shí)數(shù)x1 , x2滿足0<x1<x2<x0 , 使得f(x0)=f(x1)=f(x2),求k 的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sin2ωxcosφ+cos2ωxsinφ+ cos( +φ)(0<φ<π),其圖象上相鄰兩條對(duì)稱軸之間的距離為π,且過點(diǎn)( ). (I)求ω和φ的值;
(II)求函數(shù)y=f(2x),x∈[0, ]的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的參數(shù)方程為 (α為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程,并說明其表示什么軌跡.
(2)若直線的極坐標(biāo)方程為sinθ﹣cosθ= ,求直線被曲線C截得的弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,g(x)=af(x)﹣|x﹣1|.
(Ⅰ)當(dāng)a=0時(shí),若g(x)≤|x﹣2|+b對(duì)任意x∈(0,+∞)恒成立,求實(shí)數(shù)b的取值范圍;
(Ⅱ)當(dāng)a=1時(shí),求g(x)的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com