直線與函數(shù)的圖象在區(qū)間 內(nèi)有兩個不同的交點(diǎn),則線段的中點(diǎn)的坐標(biāo)為          

 

【答案】

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•寶坻區(qū)一模)已知函數(shù)f(x)=ax3+bx2的圖象經(jīng)過點(diǎn)A(1,4),且在點(diǎn)A處的切線恰好與直線9x-y+3=0平行.
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)若函數(shù)f(x)在區(qū)間[m,m+1]上單調(diào)遞增,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•莆田模擬)如圖,邊長為3(百米)的正方形ABCD是一個觀光區(qū)的平面示意圖,中間葉形陰影部分MN是一片人工湖,它的左下方邊緣曲線段MN為函數(shù)y=
2x
(1≤x≤2)
的圖象.為了便于游客觀光,擬在觀光區(qū)內(nèi)鋪設(shè)一條穿越該區(qū)域的直路l(寬度不計),其與人工湖左下方曲線段MN相切(切點(diǎn)記為P),并把該區(qū)域分為兩部分.現(xiàn)直路l左下部分區(qū)域規(guī)劃為花圃,記點(diǎn)P到邊AD距離為t,f(t)表示花圃的面積.
(1)求直路l所在的直線與兩坐標(biāo)軸的交點(diǎn)坐標(biāo);
(2)求面積f(t)的解析式;
(3)請你制定一個鋪設(shè)方案,使得花圃面積最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•海珠區(qū)一模)已知函數(shù)f(x)=x3+3ax-1
(1)若函數(shù)y=f(x)在x=-1時有與x軸平行的切線,求f(x)的表達(dá)式;
(2)設(shè)g(x)=
13
[af'(x)-3a2+3],其中f-1(x)是f(x)的導(dǎo)函數(shù),若函數(shù)g(x)的圖象與直線y=x相切,求a的值;
(3)設(shè)a=-m2,當(dāng)實(shí)數(shù)m在什么范圍內(nèi)變化時,函數(shù)y=f(x)的圖象與直線y=3只有一個公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•松江區(qū)模擬)(理)設(shè)函數(shù)f(x)的圖象與直線x=a,x=b及x軸所圍成圖形的面積稱為函數(shù)f(x)在[a,b]上的面積.已知函數(shù)y=sinnx在[0,
π
n
]
上的面積為
2
n
(n∈N*)
,則函數(shù)y=cos3x+1在[0,
6
]
上的面積為
5π+2
6
5π+2
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年福建省莆田市高中畢業(yè)班教學(xué)質(zhì)量檢查數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,邊長為3(百米)的正方形ABCD是一個觀光區(qū)的平面示意圖,中間葉形陰影部分MN是一片人工湖,它的左下方邊緣曲線段MN為函數(shù)的圖象.為了便于游客觀光,擬在觀光區(qū)內(nèi)鋪設(shè)一條穿越該區(qū)域的直路l(寬度不計),其與人工湖左下方曲線段MN相切(切點(diǎn)記為P),并把該區(qū)域分為兩部分.現(xiàn)直路l左下部分區(qū)域規(guī)劃為花圃,記點(diǎn)P到邊AD距離為t,f(t)表示花圃的面積.
(1)求直路l所在的直線與兩坐標(biāo)軸的交點(diǎn)坐標(biāo);
(2)求面積f(t)的解析式;
(3)請你制定一個鋪設(shè)方案,使得花圃面積最大,并求出最大值.

查看答案和解析>>

同步練習(xí)冊答案