已知函數(shù)h(x)=f(x)+g(x),其中f(x)是x的正比例函數(shù),g(x)是x的反比例函數(shù),h()=16,h(1)=8,求h(x)及其定義域.

答案:
解析:

  解:設(shè)f(x)=k1x(k1≠0),g(x)=(k2≠0),則h(x)=k1x+

  由題意,得解得k1=3,k2=5.

  所以h(x)=3x+,定義域是(-∞,0)∪(0,+∞).


提示:

本題中已知函數(shù)的模型,用待定系數(shù)法求解析式.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:福建省安溪一中、惠安一中、養(yǎng)正中學(xué)2011-2012學(xué)年高一上學(xué)期期中聯(lián)考數(shù)學(xué)試題 題型:044

若函數(shù)f(x)滿足下列條件:在定義域內(nèi)存在x0,使得f(x0+1)=f(x0)+f(1)成立,則稱函數(shù)f(x)具有性質(zhì)M;反之,若x0不存在,則稱函數(shù)f(x)不具有性質(zhì)M.

(Ⅰ)證明:函數(shù)f(x)=2x具有性質(zhì)M,并求出對(duì)應(yīng)的x0的值;

(Ⅱ)已知函數(shù)h(x)=lg具有性質(zhì)M,求a的取值范圍;

(Ⅲ)試探究形如①y=kx+b(k≠0)、②y=ax2+bx+c(a≠0)、③y=(k≠0)、④y=ax(a>0且a≠1)、⑤y=logax(a>0且a≠1)的函數(shù),指出哪些函數(shù)一定具有性質(zhì)M?并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:遼寧省葫蘆島一高2010-2011學(xué)年高二下學(xué)期第一次月考數(shù)學(xué)理科試題 題型:044

已知函數(shù)f(x)=x2+bsinx-2(b∈R),F(xiàn)(x)=f(x)+2,且對(duì)于任意實(shí)數(shù)x,恒有F(x)-F(-x)=0

(1)求函數(shù)f(x)的解析式;

(2)已知函數(shù)g(x)=f(x)+2(x+1)+alnx在區(qū)間(0,1)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍;

(3)函數(shù)h(x)=ln(1+x2)-f(x)-k有幾個(gè)零點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山東省濰坊市三縣2012屆高三上學(xué)期12月聯(lián)考數(shù)學(xué)文科試題 題型:044

已知函數(shù)f(x)=x2+bsinx-2,F(xiàn)(x)=f(x)+2,且對(duì)于任意實(shí)數(shù)x,恒有F(x)-F(-x)=0.

(1)求函數(shù)f(x)的解析式;

(2)已知函數(shù)g(x)=f(x)+2(x+1)+alnx在區(qū)間(0,1)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍;

(3)函數(shù)h(x)=ln(1+x2)-f(x)-k有幾個(gè)零點(diǎn)?(注:)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆浙江省高二下學(xué)期期末文科數(shù)學(xué)試卷(解析版) 題型:填空題

若函數(shù)f(x)在定義域D內(nèi)某區(qū)間I上是增函數(shù),且在I上是減函數(shù),則稱y=f(x)在I 上是“弱增函數(shù)”.已知函數(shù)h(x)=x2-(b-1)x+b在(0,1]上是“弱增函數(shù)”,則實(shí)數(shù)b的值為         

 

查看答案和解析>>

同步練習(xí)冊(cè)答案