【題目】已知函數(shù) ,且此函數(shù)圖象過點(1,5).
(1)求實數(shù)m的值;
(2)判斷f(x)奇偶性;
(3)討論函數(shù)f(x)在[2,+∞)上的單調(diào)性?并證明你的結(jié)論.
【答案】
(1)解:∵函數(shù)圖象過點(1,5).1+m=5
∴m=4
(2)解:此時函數(shù)的定義域為:{x|x≠0且x∈R}
∵f(﹣x)=﹣x﹣ =﹣(x+ )=﹣f(x)
∴奇函數(shù)
(3)解:f′(x)=1﹣
∵x≥2
∴f′(x)≥0
∴f(x)在[2,+∞)上單調(diào)遞增
【解析】(1)由圖象過點,將點的坐標代入函數(shù)解析式求解m即可.(2)先看定義域關于原點對稱,再看f(﹣x)與f(x)的關系判斷.(3)用導數(shù)法或定義判斷即可.
【考點精析】通過靈活運用函數(shù)單調(diào)性的判斷方法和函數(shù)的奇偶性,掌握單調(diào)性的判定法:①設x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較;偶函數(shù)的圖象關于y軸對稱;奇函數(shù)的圖象關于原點對稱即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)y=f(x)的圖象上存在兩點,使得函數(shù)的圖象在這兩點處的切線互相垂直,則稱y=f(x)具有T性質(zhì).下列函數(shù)中具有T性質(zhì)的是( )
A.y=sinx
B.y=lnx
C.y=ex
D.y=x3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖四棱錐P﹣ABCD底面是矩形,PA⊥平面ABCD,PA=AB=1, ,E是BC上的點,
(1)試確定E點的位置使平面PED⊥平面PAC,并證明你的結(jié)論;
(2)在條件(1)下,求二面角B﹣PE﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=f(2x+1)定義域是[﹣1,0],則y=f(x+1)的定義域是( 。
A.[﹣1,1]
B.[0,2]
C.[﹣2,0]
D.[﹣2,2]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題:“x∈{x|﹣1≤x≤1},都有不等式x2﹣x﹣m<0成立”是真命題.
(1)求實數(shù)m的取值集合B;
(2)設不等式(x﹣3a)(x﹣a﹣2)<0的解集為A,若x∈A是x∈B的充分不必要條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,以坐標原點O為圓心的單位圓與x軸正半軸相交于點A,點B,P在單位圓上,且B(﹣ , ),∠AOB=α.
(1)求 的值;
(2)若四邊形OAQP是平行四邊形,
(i)當P在單位圓上運動時,求點O的軌跡方程;
(ii)設∠POA=θ(0≤θ≤2π),點Q(m,n),且f(θ)=m+ n.求關于θ的函數(shù)f(θ)的解析式,并求其單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣9x,函數(shù)g(x)=3x2+a. (Ⅰ)已知直線l是曲線y=f(x)在點(0,f(0))處的切線,且l與曲線y=g(x)相切,求a的值;
(Ⅱ)若方程f(x)=g(x)有三個不同實數(shù)解,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C1的參數(shù)方程為 (θ為參數(shù)).以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρcosθ=﹣2.
(Ⅰ)求C1和C2在直角坐標系下的普通方程;
(Ⅱ)已知直線l:y=x和曲線C1交于M,N兩點,求弦MN中點的極坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com