過(guò)點(diǎn)A(1,2)且垂直于直線2x+y-5=0的直線方程為( )
A.x-2y+4=0
B.2x+y-7=0
C.x-2y+3=0
D.x-2y+5=0
【答案】分析:根據(jù)兩條直線垂直的性質(zhì)求得所求的直線的斜率等于,用點(diǎn)斜式求得所求直線的方程.
解答:解:∵直線2x+y-5=0的斜率等于-2,故所求的直線的斜率等于,
故過(guò)點(diǎn)A(1,2)且垂直于直線2x+y-5=0的直線方程為 y-2=(x-1),即x-2y+3=0,
故選C.
點(diǎn)評(píng):本題主要考查兩條直線垂直的性質(zhì),用點(diǎn)斜式求直線的方程,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在平面直角坐標(biāo)系xoy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=4
(I)若直線l過(guò)點(diǎn)A(4,0),且被圓C1截得的弦長(zhǎng)為2
3
,求直線l的方程;
(II)設(shè)P(a,b)為平面上的點(diǎn),滿足:存在過(guò)點(diǎn)P的兩條互相垂的直線l1與l2,l1的斜率為2,它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長(zhǎng)與直線l2被圓C2截得的弦長(zhǎng)相等,試求滿足條件的a,b的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
4
+
y2
9
=1
上任一點(diǎn)P,由點(diǎn)P向x軸作垂線段PQ,垂足為Q,點(diǎn)M在PQ上,且
PM
=2
MQ
,點(diǎn)M的軌跡為C.
(1)求曲線C的方程;
(2)過(guò)點(diǎn)D(0,-2)作直線l與曲線C交于A、B兩點(diǎn),設(shè)N是過(guò)點(diǎn)(0,-
4
17
)
且平行于x軸的直線上一動(dòng)點(diǎn),滿足
ON
=
OA
+
OB
(O為原點(diǎn)),問(wèn)是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線的方程;若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)坐標(biāo)系中,已知一個(gè)圓心在坐標(biāo)原點(diǎn),半徑為2的圓,從這個(gè)圓上任意一點(diǎn)P向y軸作垂線段PP′,P′為垂足.
(1)求線段PP′中點(diǎn)M的軌跡C的方程.
(2)過(guò)點(diǎn)Q(一2,0)作直線l與曲線C交于A、B兩點(diǎn),設(shè)N是過(guò)點(diǎn)(-
4
17
,0),且以言
a
=(0,1)
為方向向量的直線上一動(dòng)點(diǎn),滿足
ON
=
OA
+
OB
(O為坐標(biāo)原點(diǎn)),問(wèn)是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線Z的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知B、C是拋物線x2=2py(p>0)上的兩點(diǎn),O為坐標(biāo)原點(diǎn),若|OB|=|OC|,且△BOC的垂心為拋物線的焦點(diǎn).
(1)求直線BC的方程;
(2)設(shè)直線BC與Y軸相交于A點(diǎn),Q為拋物線上的動(dòng)點(diǎn),eQ以Q為圓心且過(guò)點(diǎn)A,問(wèn)是否存在定直線平行于x軸,且被eQ截得的弦長(zhǎng)為定值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年云南省玉溪一中高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知橢圓上任一點(diǎn)P,由點(diǎn)P向x軸作垂線段PQ,垂足為Q,點(diǎn)M在PQ上,且,點(diǎn)M的軌跡為C.
(1)求曲線C的方程;
(2)過(guò)點(diǎn)D(0,-2)作直線l與曲線C交于A、B兩點(diǎn),設(shè)N是過(guò)點(diǎn)且平行于x軸的直線上一動(dòng)點(diǎn),滿足(O為原點(diǎn)),問(wèn)是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線的方程;若不存在說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案