已知A,B分別是直線(xiàn)y=x和y=-x上的兩個(gè)動(dòng)點(diǎn),線(xiàn)段AB的長(zhǎng)為2,D是AB的中點(diǎn).
(1)求動(dòng)點(diǎn)D的軌跡C的方程;
(2)若過(guò)點(diǎn)(1,0)的直線(xiàn)l與曲線(xiàn)C交于不同兩點(diǎn)P、Q,
①當(dāng)|PQ|=3時(shí),求直線(xiàn)l的方程;
②設(shè)點(diǎn)E(m,0)是x軸上一點(diǎn),求當(dāng)恒為定值時(shí)E點(diǎn)的坐標(biāo)及定值.
【答案】分析:(1)設(shè)D(x,y),A(a,a),B(b,-b),通過(guò)D是AB的中點(diǎn),|AB|的距離,列出方程即可求動(dòng)點(diǎn)D的軌跡C的方程;
(2)若過(guò)點(diǎn)(1,0)的直線(xiàn)l與曲線(xiàn)C交于不同兩點(diǎn)P、Q,
①當(dāng)|PQ|=3時(shí),通過(guò)直線(xiàn)的斜率存在與不存在分別求解,利用圓心到直線(xiàn)的距離求出直線(xiàn)的斜率,然后求直線(xiàn)l的方程;
②當(dāng)直線(xiàn)l的斜率存在時(shí),設(shè)其斜率為k,則l的方程為y=k(x-1),推出(k2+1)x2-2k2x+k2-3=0,
由韋達(dá)定理以及,確定為定值-2,當(dāng)直線(xiàn)l的斜率不存在時(shí),求出P(1,),Q(1,-),
得到=-2,即可求出恒為定值時(shí)E點(diǎn)的坐標(biāo)及定值.
解答:解:(1)設(shè)D(x,y),A(a,a),B(b,-b),
∵D是AB的中點(diǎn),∴x=,y=,
∵|AB|=2,∴(a-b)2+(a+b)2=12,
∴(2y)2+(2x)2=12,∴點(diǎn)D的軌跡C的方程為x2+y2=3.
(2)①當(dāng)直線(xiàn)l與x軸垂直時(shí),P(1,),Q(1,-),
此時(shí)|PQ|=2,不符合題意;
當(dāng)直線(xiàn)l與x軸不垂直時(shí),設(shè)直線(xiàn)l的方程為y=k(x-1),
由于|PQ|=3,所以圓心C到直線(xiàn)l的距離為,
=,解得k=.故直線(xiàn)l的方程為y=(x-1).
②當(dāng)直線(xiàn)l的斜率存在時(shí),設(shè)其斜率為k,則l的方程為y=k(x-1),
由消去y得(k2+1)x2-2k2x+k2-3=0,
設(shè)P(x1,y1),Q(x2,y2)則由韋達(dá)定理得x1+x2=,x1x2=,
=(m-x1,-y1),=(m-x2,-y2),
=(m-x1)(m-x2)+y1y2=m2-m(x1+x2)+x1x2+y1y2
=m2-m(x1+x2)+x1x2+k2(x1-1)(x2-1)
=m2-++k2-+1)=
要使上式為定值須=1,解得m=1,
為定值-2,
當(dāng)直線(xiàn)l的斜率不存在時(shí)P(1,),Q(1,-),
由E(1,0)可得=(0,-),=(0,),
=-2,
綜上所述當(dāng)E(1,0)時(shí),為定值-2.
點(diǎn)評(píng):本題考查直線(xiàn)與圓心位置關(guān)系,數(shù)量積與韋達(dá)定理的應(yīng)用,軌跡方程的求法,考查計(jì)算能力,分類(lèi)討論思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B分別是直線(xiàn)y=
3
3
x
y=-
3
3
x
上的兩個(gè)動(dòng)點(diǎn),線(xiàn)段AB的長(zhǎng)為2
3
,D是AB的中點(diǎn).
(1)求動(dòng)點(diǎn)D的軌跡C的方程;
(2)過(guò)點(diǎn)N(1,0)作與x軸不垂直的直線(xiàn)l,交曲線(xiàn)C于P、Q兩點(diǎn),若在線(xiàn)段ON上存在點(diǎn)M(m,0),使得以MP、MQ為鄰邊的平行四邊形是菱形,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B分別是直線(xiàn)y=
3
3
x
y=-
3
3
x
上的兩個(gè)動(dòng)點(diǎn),線(xiàn)段AB的長(zhǎng)為2
3
,P是AB的中點(diǎn).
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過(guò)點(diǎn)Q(1,0)作直線(xiàn)l(與x軸不垂直)與軌跡C交于M、N兩點(diǎn),與y軸交于點(diǎn)R.若
RM
MQ
,
RN
NQ
,證明:λ+μ為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A,B分別是直線(xiàn)y=x和y=-x上的兩個(gè)動(dòng)點(diǎn),線(xiàn)段AB的長(zhǎng)為2
3
,D是AB的中點(diǎn).
(1)求動(dòng)點(diǎn)D的軌跡C的方程;
(2)若過(guò)點(diǎn)(1,0)的直線(xiàn)l與曲線(xiàn)C交于不同兩點(diǎn)P、Q,
①當(dāng)|PQ|=3時(shí),求直線(xiàn)l的方程;
②設(shè)點(diǎn)E(m,0)是x軸上一點(diǎn),求當(dāng)
PE
QE
恒為定值時(shí)E點(diǎn)的坐標(biāo)及定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A,B分別是直線(xiàn)y=x和y=-x上的兩個(gè)動(dòng)點(diǎn),線(xiàn)段AB的長(zhǎng)為2
3
,D是AB的中點(diǎn).
(1)求動(dòng)點(diǎn)D的軌跡C的方程;
(2)若過(guò)點(diǎn)(1,0)的直線(xiàn)l與曲線(xiàn)C交于不同兩點(diǎn)P、Q,
①當(dāng)|PQ|=3時(shí),求直線(xiàn)l的方程;
②試問(wèn)在x軸上是否存在點(diǎn)E(m,0),使
PE
QE
恒為定值?若存在,求出E點(diǎn)的坐標(biāo)及定值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B分別是直線(xiàn)y=
3
3
x
y=-
3
3
x
上的兩個(gè)動(dòng)點(diǎn),線(xiàn)段AB的長(zhǎng)為2
3
,P是AB的中點(diǎn).
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過(guò)點(diǎn)Q(1,0)任意作直線(xiàn)l(與x軸不垂直),設(shè)l與(1)中軌跡C交于M、N,與y軸交于R點(diǎn).若
RM
MQ
RN
NQ
,證明:λ+μ 為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案