【題目】如圖所示,已知橢圓:()的離心率為,右準線方程是直線l,點P為直線l上的一個動點,過點P作橢圓的兩條切線,切點分別為AB(點Ax軸上方,點Bx軸下方).

1)求橢圓的標準方程;

2)①求證:分別以為直徑的兩圓都恒過定點C;

②若,求直線的方程.

【答案】1.(2)①答案見解析:②

【解析】

1)計算得到得到答案.

2)計算切線,得到坐標,得到為直徑的圓的圓方程,取計算得到答案;設,,解得坐標,得到直線方程.

1,準線,解得,故,

故橢圓方程為:.

2)①設切點,當時,,,

,則切線,所以點

為直徑的圓:,

由對稱性可知定點在x軸上,令,過定點,

同理,以為直徑的圓過定點,得證.

②設,,因為,所以

又因為,所以,

所以直線的方程為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知在四棱錐中,底面為矩形,側面底面,.

1)求二面角的大小;

2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,平面平面,,四邊形為平行四邊形,,為線段的中點,點滿足.

(Ⅰ)求證:直線平面;

(Ⅱ)求證:平面平面

(Ⅲ)若平面平面,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),().

1)若曲線在點處的切線方程為,求實數(shù)am的值;

2)關于x的方程能否有三個不同的實根?證明你的結論;

3)若對任意恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著城市化建設步伐,建設特色社會主義新農(nóng)村,有n個新農(nóng)村集結區(qū),,…,按照逆時針方向分布在凸多邊形頂點上(),如圖所示,任意兩個集結區(qū)之間建設一條新道路,兩條道路的交匯處安裝紅綠燈(集結區(qū),,…,除外),在凸多邊形內部任意三條道路都不共點,記安裝紅綠燈的個數(shù)為.

1)求,

2)求,并用數(shù)學歸納法證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若無窮數(shù)列滿足:,且對任意,(sk,l)都有,則稱數(shù)列為“T”數(shù)列.

1)證明:正項無窮等差數(shù)列是“T”數(shù)列;

2)記正項等比數(shù)列的前n項之和為,若數(shù)列是“T”數(shù)列,求數(shù)列公比的取值范圍;

3)若數(shù)列是“T”數(shù)列,且數(shù)列的前n項之和滿足,求證:數(shù)列是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx=aexgx=lnx-lna,其中a為常數(shù),且曲線y=fx)在其與y軸的交點處的切線記為l1,曲線y=gx)在其與x軸的交點處的切線記為l2,且l1l2

1)求l1,l2之間的距離;

2)若存在x使不等式成立,求實數(shù)m的取值范圍;

3)對于函數(shù)fx)和gx)的公共定義域中的任意實數(shù)x0,稱|fx0-gx0|的值為兩函數(shù)在x0處的偏差.求證:函數(shù)fx)和gx)在其公共定義域內的所有偏差都大于2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直三棱柱中,,底面三邊長分別為3,5,7,是上底面所在平面內的動點,若三棱錐的外接球表面積為,則滿足題意的動點的軌跡對應圖形的面積為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點,軸為非負半軸建立極坐標系,直線的極坐標方程為.

1)求直線的直角坐標方程和曲線的普通方程;

2)求直線與曲線交于兩點,線段的中點的橫坐標為,求的值.

查看答案和解析>>

同步練習冊答案