已知A(3,0),B(0,4),動點P(x,y)在線段AB上移動,則xy的最大值等于   
【答案】分析:解出線段AB所在直線的方程,由于出現(xiàn)了和為定值的情形,故可以用基本不等式求最值.
解答:解:AB所在直線方程為+=1,∴+2=,∴xy≤3,當(dāng)且僅當(dāng)=,即x=,y=2時取等號.由題意知,等號成立的條件足備,xy的最大值等于3
故答案為 3
點評:本題考查基本不等式,用基本不等式求最值的題型很多,本題把基本不等式與直線的方程接合起來使用,題型新穎.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A(-3,0),B(0,
3
)O為坐標(biāo)原點,點C在∠AOB內(nèi),且∠AOC=60°,設(shè)
OC
=λ
OA
+
OB
(λ∈R),則λ等于( 。
A、
3
3
B、
3
C、
1
3
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(3,0),B(0,3),C(cosα,sinα);
(1)若
AC
BC
=-1,求sin(α+
π
4
)的值
;(2)O為坐標(biāo)原點,若|
OA
-
OC
|=
13
,且α∈(0,π),求
OB
OC
的夾角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的長軸長與短軸長之比為
3
5
,焦點坐標(biāo)分別為F1(-2,0),F(xiàn)2(2,0).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知A(-3,0),B(3,0),P是橢圓C上異于A、B的任意一點,直線AP、BP分別交y軸于M、N,求
OM
ON
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(3,0),B(0,3),C(cosα,sinα),O為原點.
(1)若
AC
BC
,求sin2α的值;
(2)若丨
OC
+
OA
丨=
13
,α∈(0,π),求
OB
OC
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(3,0),B(0,3),C(cosα,sinα).
(1)若|
OA
+
OC
|=
13
,且α∈(0,π),求
OB
OC
夾角的大;
(2)若(
OA
+2
OB
)⊥
OC
,求cos2α.

查看答案和解析>>

同步練習(xí)冊答案