如圖所示,在正方體ABCDA1B1C1D1中,M、N分別是棱AB、CC1的中點,△MB1P的頂點P在棱CC1與棱C1D1上運動,
有以下四個命題:
A.平面MB1PND1;
B.平面MB1P⊥平面ND1A1;
C.△MB1P在底面ABCD上的射影圖形的面積為定值;
D.△MB1P在側(cè)面D1C1CD上的射影圖形是三角形.
其中正確命題的序號是__________.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)如圖,已知在側(cè)棱垂直于底面三棱柱ABC—A1B1C1中AC=3,AB=5,
(Ⅰ)求證:          
(Ⅱ)求證:AC1//平面CDB1;
(Ⅲ)求三棱錐A1—B1CD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)

如圖,圓柱OO1內(nèi)有一個三棱柱ABC-A1B1C1,
三棱柱的底面為圓柱底面的內(nèi)接三角形,且AB是圓O的直徑。
(Ⅰ)證明:平面A1ACC1⊥平面B1BCC1;
(Ⅱ)設AB=AA1。在圓柱OO1內(nèi)隨機選取一點,記該點取自于
三棱柱ABC-A1B1C1內(nèi)的概率為P。
(i)                            當點C在圓周上運動時,求P的最大值;
記平面A1ACC1與平面B1OC所成的角為(0°<  90°)。當P取最大值時,求cos的值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知直三棱柱ABCA1B1C1,E、F分別是棱CC1AB中點。
(1)求證:;
(2)求四棱錐A—ECBB1的體積;
(3)判斷直線CF和平面AEB1的位置關系,并加以證明。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
已知ABCD是矩形,AD=4,AB=2,E、F分別是線段AB、BC的中點,PA⊥面ABCD。
(1)證明:PF⊥FD;
(2)在PA上是否存在點G,使得EG//平面PFD。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

是兩條不同的直線,是兩個不重合的平面,
給定下列四個命題,其中為真命題的序號是              。
;②
;④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直三棱柱ABC—A1B1C1中,,,直線B1C與平面ABC成30°角。


 
  (1)求證:平面B1AC⊥平面ABB1A1;

  (2)求二面角B——A的正切值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在正四棱錐S-ABCD中,側(cè)面與底面所成的角為,則它的外接球半徑R與內(nèi)切球半徑之比為(。
A.5  B.  C.10  D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

ABCDCDEF是兩個全等的正方形,且兩個正方形所在平面互相垂直,MBC的中點,則異面直線AMDF所成角的正切值為        

查看答案和解析>>

同步練習冊答案