已知F1,F(xiàn)2分別是雙曲線3x2-y2=3a2(a>0)的左、右焦點,P是拋物線y2=8ax與雙曲線的一個交點,滿足|PF1|+|PF2|=12,則a的值為( )
A.-1
B.1
C.2
D.3
【答案】分析:確定雙曲線的焦點坐標,結(jié)合題意,確定焦半徑,利用雙曲線的定義可解.
解答:解:由雙曲線方程得c=2a
∴F1(-2a,0),F(xiàn)2(2a,0),
由拋物線方程y2=8ax,設(shè)F2(2a,0)為拋物線的焦點,其準線為x=-2a,過F1
則有|PF1|-|PF2|=2a,
∵|PF1|+|PF2|=12,
∴|PF1|=6+a,|PF2|=6-a,
又雙曲線左準線為x=-,離心率e=2
∴|PF1|=2xP+a=6+a,∴xP=3
∴|PF2|=xP+2a=6-a,∴a=1
故選B.
點評:本題綜合考查拋物線與雙曲線的定義與性質(zhì),考查方程思想,解題的關(guān)鍵是靈活運用定義解題,并學會從方程到圖形來溝通數(shù)與形之間的聯(lián)系.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•湖南)已知F1,F(xiàn)2分別是橢圓E:
x25
+y2=1
的左、右焦點F1,F(xiàn)2關(guān)于直線x+y-2=0的對稱點是圓C的一條直徑的兩個端點.
(Ⅰ)求圓C的方程;
(Ⅱ)設(shè)過點F2的直線l被橢圓E和圓C所截得的弦長分別為a,b.當ab最大時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•青島二模)已知F1、F2分別是雙曲線C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右焦點,P為雙曲線右支上的一點,
PF2
F1F2
,且|
PF1
|=
2
|
PF2
|
,則雙曲線的離心率為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2分別是雙曲線
x2
a2
-
y2
b2
=1 (a>0, b>0)
的左、右焦點,過點F2與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點M,若點M在以線段F1F2為直徑的圓外,則雙曲線離心率的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,且橢圓C的離心率e=
1
2
,F(xiàn)1也是拋物線C1:y2=-4x的焦點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點F2的直線l交橢圓C于D,E兩點,且2
DF2
=
F2E
,點E關(guān)于x軸的對稱點為G,求直線GD的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2分別是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左,右焦點,P是雙曲線的上一點,若
PF1
PF2
=0
|
PF1
|•|
PF2
|=3ab
,則雙曲線的離心率是
 

查看答案和解析>>

同步練習冊答案