已知實數(shù)x,y滿足
x2+y2≤4
12x-5y+13≥0
,則
|12x-5y+39|
13
的取值范圍是
 
考點:點到直線的距離公式
專題:計算題,空間位置關系與距離
分析:
|12x-5y+39|
13
的幾何意義是滿足
x2+y2≤4
12x-5y+13≥0
點(x,y)到直線12x-5y+13=0的距離,即可的成交量.
解答: 解:
|12x-5y+39|
13
的幾何意義是滿足
x2+y2≤4
12x-5y+13≥0
點(x,y)到直線12x-5y+13=0的距離,
∵圓心(0,0)到直線12x-5y+13=0的距離為1,圓的半徑為2,
|12x-5y+39|
13
的取值范圍是[0,3],
故答案為:[0,3]
點評:本題考查點到直線的距離公式,利用
|12x-5y+39|
13
的幾何意義是滿足
x2+y2≤4
12x-5y+13≥0
點(x,y)到直線12x-5y+13=0的距離是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=sin(2x+
π
6
)+
3
2
,x∈R.
(1)求函數(shù)f(x)的最小正周期和單調增區(qū)間;
(2)求函數(shù)f(x)的對稱軸方程及對稱中心;
(3)當x∈(0,
π
2
)時,函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設P(x,y)是圓C:(x-1)2+(y-1)2=1上的點,則
y+1
x
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若存在不為零的常數(shù)T,使得函數(shù)y=f(x)對定義域內的任意x均有f(x+T)=f(x),則稱函數(shù)y=f(x)為周期函數(shù),其中常數(shù)T就是函數(shù)的一個周期.
(1)證明:若存在不為零的常數(shù)a使得函數(shù)y=f(x)對定義域內的任一x均有f(x+a)=-f(x),則此函數(shù)是周期函數(shù);
(2)若定義在R上的奇函數(shù)y=f(x)滿足f(x+1)=-f(x),試探究此函數(shù)在區(qū)間[-2008,2008]內的零點的最少個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖為函數(shù)y1=Asin(ωx+φ)(|φ|<
π
2
)的一個周期內的圖象.
(1)寫出y1的解析式;
(2)若y2與y1的圖象關于直線x=2對稱,寫出y2的解析式;
(3)指出y2的周期、頻率、振幅、初相.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2+2x+c(a、c∈N*)滿足:①f(1)=5;②6<f(2)<11.
(1)求a、c的值;
(2)設g(x)=f(x)-x2+m,若函數(shù)y=logmg(x)(m>0且m≠1)在區(qū)間[-2,4]上單調遞增,求實數(shù)m的取值范圍;
(3)設函數(shù)h(x)=log2[t-f(x)],討論此函數(shù)在定義域范圍內的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=10|x+1|-1的單調減區(qū)間為( 。
A、(-∞,-1)
B、(-∞,1)
C、(-1,+∞)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an},是一個公差大于0的等差數(shù)列,且滿足a3a6=55,a2+a7=16
(1)求數(shù)列{an}的通項公式
(2)記Sn為數(shù)列{an}的前n項和,是否存在正整數(shù)n,使得Sn>30n+400?若存在,求n的最小值;若不存在,說明理由.
(3)若數(shù)列{an}和數(shù)列{bn}滿足等式an=
b1
2
+
b2
22
+
b3
23
+…+
bn
2n
(n為正整數(shù)),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:lg4+lg25-log28×log2
1
8
=
 

查看答案和解析>>

同步練習冊答案