【題目】已知圓M:(x﹣1)2+y2= ,橢圓C: +y2=1,若直線l與橢圓交于A,B兩點(diǎn),與圓M相切于點(diǎn)P,且P為AB的中點(diǎn),則這樣的直線l有( )
A.2條
B.3條
C.4條
D.6條
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)在定義域[-1,1]上既是奇函數(shù),又是減函數(shù).
(1)求證:對任意x1,x2∈[-1,1],有[f(x1)+f(x2)]·(x1+x2)≤0;
(2)若f(1-a)+f(1-a2)<0,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b,c為三個(gè)不同的實(shí)數(shù),記集合A= ,B= ,若集合A,B中元素個(gè)數(shù)都只有一個(gè),則b+c=( )
A.1
B.0
C.﹣1
D.﹣2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的可導(dǎo)函數(shù)f(x)滿足f(x)﹣f(﹣x)=2x3 , 當(dāng)x∈(﹣∞,0]時(shí)f'(x)<3x2 , 實(shí)數(shù)a滿足f(1﹣a)﹣f(a)≥﹣2a3+3a2﹣3a+1,則a的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a∈R,函數(shù)f(x)滿足f(2x)=x2﹣2ax+a2﹣1.
(Ⅰ)求f(x)的解析式,并寫出f(x)的定義域;
(Ⅱ)若f(x)在 上的值域?yàn)閇﹣1,0],求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓C: + =1(a>b>0)的左、右焦點(diǎn)分別為F1、F2 , 焦距為2,過點(diǎn)F2作直線l交橢圓于M、N兩點(diǎn),△F1MN的周長為8.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l分別交直線y= x,y=﹣ x于P,Q兩點(diǎn),求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ABC= ,邊BC在平面α內(nèi),頂點(diǎn)A在平面α外,直線AB與平面α所成角為θ.若平面ABC與平面α所成的二面角為 ,則sinθ= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古希臘人常用小石子在沙灘上擺成各種形狀來研究數(shù).比如:他們研究過圖(1)中的1,3,6,10,…,由于這些數(shù)能夠表示成三角形,所以將其稱為三角形數(shù);類似地,稱圖(2)中的1,4,9,16,…這樣的數(shù)為正方形數(shù).下列數(shù)中既是三角形數(shù)又是正方形數(shù)的是( )
A. 289 B. 1 024
C. 1 225 D. 1 378
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)袋子里裝有7個(gè)球,其中有紅球4個(gè),編號分別為1,2,3,4;白球3個(gè),編號分別為2,3,4.從袋子中任取4個(gè)球(假設(shè)取到任何一個(gè)球的可能性相同).
(Ⅰ)求取出的4個(gè)球中,含有編號為3的球的概率;
(Ⅱ)在取出的4個(gè)球中,紅球編號的最大值設(shè)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com