【題目】正四面體ABCD中,E、F分別為邊AB、BD的中點,則異面直線AF、CE所成角的余弦值為

【答案】
【解析】解:如圖,連接CF,取BF的中點M,連接CM,EM, 則ME∥AF,故∠CEM即為所求的異面直線角.

設這個正四面體的棱長為2,
在△ABD中,AF= =CE=CF,EM= ,CM=
∴cos∠CEM= =
所以答案是
【考點精析】解答此題的關鍵在于理解異面直線及其所成的角的相關知識,掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 ,函數(shù) ,若函數(shù)f(x)圖象的兩個相鄰的對稱軸間的距離為
(1)求函數(shù)f(x)的單調增區(qū)間;
(2)在△ABC中,角A,B,C所對的邊分別是a,b,c,若△ABC滿足f(A)=1,a=3,BC邊上的中線長為3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=e ,其中e為自然對數(shù)的底數(shù).
(1)設g(x)=(x+1)f′(x)(其中f′(x)為f(x)的導函數(shù)),判斷g(x)在(﹣1,+∞)上的單調性;
(2)若F(x)=ln(x+1)﹣af(x)+4無零點,試確定正數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司準備將1000萬元資金投入到市環(huán)保工程建設中,現(xiàn)有甲、乙兩個建設項目選擇,若投資甲項目一年后可獲得的利潤ξ1(萬元)的概率分布列如表所示:

ξ1

110

120

170

P

m

0.4

n

且ξ1的期望E(ξ1)=120;若投資乙項目一年后可獲得的利潤ξ2(萬元)與該項目建設材料的成本有關,在生產(chǎn)的過程中,公司將根據(jù)成本情況決定是否在第二和第三季度進行產(chǎn)品的價格調整,兩次調整相互獨立且調整的概率分別為p(0<p<1)和1﹣p.若乙項目產(chǎn)品價格一年內調整次數(shù)X(次數(shù))與ξ2的關系如表所示:

X

0

1

2

ξ2

41.2

117.6

204.0

(Ⅰ)求m,n的值;
(Ⅱ)求ξ2的分布列;
(Ⅲ)若該公司投資乙項目一年后能獲得較多的利潤,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸入x=20,則輸出的y的值為(
A.2
B.﹣1
C.﹣
D.﹣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】據(jù)某市地產(chǎn)數(shù)據(jù)研究院的數(shù)據(jù)顯示,2016年該市新建住宅銷售均價走勢如圖所示,為抑制房價過快上漲,政府從8月份采取宏觀調控措施,10月份開始房價得到很好的抑制.

(Ⅰ)地產(chǎn)數(shù)據(jù)研究院研究發(fā)現(xiàn),3月至7月的各月均價y(萬元/平方米)與月份x之間具有較強的線性相關關系,試建立y關于x的回歸方程(系數(shù)精確到0.01),政府若不調控,依次相關關系預測第12月份該市新建住宅銷售均價;
(Ⅱ)地產(chǎn)數(shù)據(jù)研究院在2016年的12個月份中,隨機抽取三個月份的數(shù)據(jù)作樣本分析,若關注所抽三個月份的所屬季度,記不同季度的個數(shù)為X,求X的分布列和數(shù)學期望.
參考數(shù)據(jù): =25, =5.36, =0.64
回歸方程 中斜率和截距的最小二乘估計公式分別為:
=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= sinxcosx+cos2x
(I)求函數(shù)f(x)的最小正周期;
(II)若﹣ <α<0,f(α)= ,求sin2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,棱長為a,M、N分別為A1B和AC上的點,A1M=AN= ,則MN與平面BB1C1C的位置關系是(
A.相交
B.平行
C.垂直
D.不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}中,a3=5,a5+a6=20,且2 ,2 ,2 成等比數(shù)列,數(shù)列{bn}滿足bn=an﹣(﹣1)nn.
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)設sn是數(shù)列{bn}前n項和,求sn

查看答案和解析>>

同步練習冊答案