已知函數(shù).
(1)若,求曲線在點處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)設函數(shù).若至少存在一個,使得成立,求實數(shù)的取值范圍.
(1),(2)當時,在上單調(diào)遞減,若,單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為.若,在上單調(diào)遞增.(3).
解析試題分析:(1)利用導數(shù)幾何意義求切線斜率,根據(jù)點斜式寫切線過程. 函數(shù)的定義域為,.當時,函數(shù),,.所以曲線在點處的切線方程為,即.(2)利用導數(shù)研究函數(shù)單調(diào)性,關鍵明確導函數(shù)零點與定義域的關系,正確判斷導數(shù)符號. 當時,,,當時,若,由,即,得或;由,即,得.若,,.(3)存在性問題,利用變量分離轉化為求函數(shù)最值. 因為,等價于.令,等價于“當 時,”. 因為當時,,所以,因此.
函數(shù)的定義域為,. 1分
(1)當時,函數(shù),,.
所以曲線在點處的切線方程為,
即. 4分
(2)函數(shù)的定義域為.
1.當時,在上恒成立,
則在上恒成立,此時在上單調(diào)遞減. 5分
2.當時,,
(ⅰ)若,
由,即,得或; 6分
由,即,得. 7分
所以函數(shù)的單調(diào)遞增區(qū)間為和,
單調(diào)遞減區(qū)間為
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=(x2+ax-2a2+3a)ex(x∈R),其中a∈R.
(1)當a=0時,求曲線y=f(x)在點(1,f(1))處的切線的斜率;
(2)當a≠時,求函數(shù)y=f(x)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=ln x+2x,g(x)=a(x2+x).
(1)若a=,求F(x)=f(x)-g(x)的單調(diào)區(qū)間;
(2)若f(x)≤g(x)恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù) ().
(1)若,求函數(shù)的極值;
(2)設.
① 當時,對任意,都有成立,求的最大值;
② 設的導函數(shù).若存在,使成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),其中且.
(1)討論的單調(diào)性;
(2) 若不等式恒成立,求實數(shù)取值范圍;
(3)若方程存在兩個異號實根,,求證:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)當a=l時,求的單調(diào)區(qū)間;
(2)若函數(shù)在上是減函數(shù),求實數(shù)a的取值范圍;
(3)令,是否存在實數(shù)a,當(e是自然對數(shù)的底數(shù))時,函數(shù)g(x)最小值是3,若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)(為常數(shù),是自然對數(shù)的底數(shù)),曲線在點處的切線與軸平行.
(Ⅰ)求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設,其中為的導函數(shù).證明:對任意.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com