精英家教網 > 高中數學 > 題目詳情

已知Sn是數列{an}的前n項和,數學公式(n≥2,n∈N*),且數學公式
(1)求a2的值,并寫出an和an+1的關系式;
(2)求數列{an}的通項公式及Sn的表達式;
(3)我們可以證明:若數列{bn}有上界(即存在常數A,使得bn<A對一切n∈N*恒成立)且單調遞增;或數列{bn}有下界(即存在常數B,使得bn>B對一切n∈N*恒成立)且單調遞減,則數學公式存在.直接利用上述結論,證明:數學公式存在.

解:(1)∵,且
∴2S2=S1+2

當n≥2時,①;

②-①得
,即n=1時也成立.
(n∈N*)…(5分)
解:(2)由(1)得,2a1=1,
∴{2nan}是首項為1,公差為1的等差數列,
∴2nan=1+(n-1)×1=n,
,n≥2時,,,,
,也滿足上式,
(n∈N*)…(10分)
證明:(3)∵,
∴{Sn}單調遞增,
,
存在…(15分)
分析:(1)由,且,令n=2可求a2,利用an+1=Sn+1-Sn可求出an和an+1的關系式
(2)由(1)可構造得{2nan}是首項為1,公差為1的等差數列,可先求2nan,進而可求an,sn
(3)由Sn+1-Sn的差的符號可判斷單調性,結合單調性可判斷其的上界,可證
點評:本題主要考查了數列的遞推公式在數列通項公式求解中的應用,及構造等差數列求解通項的應用,數列的單調性在數列的范圍求解中的應用
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知Sn是數列{an}的前n項和,an>0,Sn=
a
2
n
+an
2
,n∈N*,
(Ⅰ)求Sn
(Ⅱ)若數列{bn}滿足b1=2,bn+1=2an+bn,求bn

查看答案和解析>>

科目:高中數學 來源: 題型:

(文科題)
(1)在等比數列{an }中,a5=162,公比q=3,前n項和Sn=242,求首項a1和項數n的值.
(2)已知Sn是數列{an}的前n項和,Sn=2n,求an

查看答案和解析>>

科目:高中數學 來源: 題型:

已知Sn是數列{an}的前n項和,且有Sn=n2+n,則數列{an}的通項an=
2n
2n

查看答案和解析>>

科目:高中數學 來源: 題型:

已知Sn是數列{an}的前n項和,Sn=2n-1,則a10=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•崇明縣一模)已知Sn是數列{an}前n項和,a1=1,an+1=an+2(n∈N*),則
lim
n→∞
nan
Sn
=
2
2

查看答案和解析>>

同步練習冊答案