已知是x,y軸正方向的單位向量,設=,=,且滿足
(1)求點P(x,y)的軌跡方程;
(2)過點的直線l交上述軌跡于A,B兩點,且,求直線l的方程.
【答案】分析:(Ⅰ)因P(x,y),欲求點M的軌跡C的方程,即尋找x,y之間 的關(guān)系式,利用向量間的關(guān)系求出P點的坐標后代入即可得;
(Ⅱ)先設直線l的方程,將其與(1)中結(jié)論方程組成方程組,再利用兩點間的距離公式列出關(guān)于直線方程中參數(shù)的等式,由此式即可求得參數(shù),從而求得直線l的方程.
解答:解:(1)∵,(2分)
,(5分)
化簡得,(8分)
(2)設,由(10分)
設A(x1,y1)、B(x2,y2)由(12分),(14分)
所以直線l的方程為.(16分)
點評:求曲線的軌跡方程是解析幾何的基本問題.求符合某種條件的動點的軌跡方程,其實質(zhì)就是利用題設中的幾何條件,用“坐標化”將其轉(zhuǎn)化為尋求變量間的關(guān)系.直接法是將動點滿足的幾何條件或者等量關(guān)系,直接坐標化,列出等式化簡即得動點軌跡方程.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知拋物線的頂點在坐標原點O,焦點F在x軸正半軸上,傾斜角為銳角的直線l過F點,設直線l與拋物線交于A、B兩點,與拋物線的準線交于M點,
MF
FB
(λ>0)
(1)若λ=1,求直線l斜率
(2)若點A、B在x軸上的射影分別為A1,B1且|
B1F
|,|
OF
|,2|
A1F
|成等差數(shù)列求λ的值
(3)設已知拋物線為C1:y2=x,將其繞頂點按逆時針方向旋轉(zhuǎn)90°變成C1′.圓C2:x2+(y-4)2=1的圓心為點N.已知點P是拋物線C1′上一點(異于原點),過點P作圓C2的兩條切線,交拋物線C′1于T,S,兩點,若過N,P兩點的直線l垂直于TS,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l與x軸正方向、y軸正方向交于A,B兩點,M,N是線段AB的三等分點,橢圓C經(jīng)過M,N兩點.
(1)若直線l的方程為2x+y-6=0,求橢圓C的標準方程;
(2)若橢圓的中心在原點,對稱軸在坐標軸上,其離心率e∈(0,
12
),求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2008-2009學年江蘇省揚州市高二(上)期末數(shù)學試卷(解析版) 題型:解答題

已知直線l與x軸正方向、y軸正方向交于A,B兩點,M,N是線段AB的三等分點,橢圓C經(jīng)過M,N兩點.
(1)若直線l的方程為2x+y-6=0,求橢圓C的標準方程;
(2)若橢圓的中心在原點,對稱軸在坐標軸上,其離心率e∈(0,),求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年四川省成都七中高二(下)3月月考數(shù)學試卷(理科)(解析版) 題型:解答題

已知拋物線的頂點在坐標原點O,焦點F在x軸正半軸上,傾斜角為銳角的直線l過F點,設直線l與拋物線交于A、B兩點,與拋物線的準線交于M點,(λ>0)
(1)若λ=1,求直線l斜率
(2)若點A、B在x軸上的射影分別為A1,B1且||,||,2||成等差數(shù)列求λ的值
(3)設已知拋物線為C1:y2=x,將其繞頂點按逆時針方向旋轉(zhuǎn)90°變成C1.圓C2:x2+(y-4)=1的圓心為點N.已知點P是拋物線C1上一點(異于原點),過點P作圓C2的兩條切線,交拋物線C1于T,S,兩點,若過N,P兩點的直線l垂直于TS,求直線l的方程.

查看答案和解析>>

同步練習冊答案