已知二次函數(shù)f(x)=ax2+bx+c的圖像的頂點(diǎn)坐標(biāo)是(,-),且f(3)=2
(Ⅰ)求y=f(x)的表達(dá)式,并求出f(1),f(2)的值;
(Ⅱ)數(shù)列{an},{bn},若對任意的實(shí)數(shù)x都滿足g(x)·f(x)+anx+bn=xn+1,n∈N*,其中g(shù)(x)是定義在實(shí)數(shù)R上的一個函數(shù),求數(shù)列{an}、{bn}的通項(xiàng)公式;
(Ⅲ)設(shè)圓Cn:(x-an)2+(y-bn)2=,若圓Cn與圓Cn+1外切,{rn}是各項(xiàng)都是正數(shù)的等比數(shù)列,記Sn是前n個圓的面積之和,求.(n∈N*)
解:(Ⅰ)由已知得f(x)=a(x-)2-,a≠0,∴f(3)=a(3-)2-=2 ∴a=1 ∴f(x)=x2-3x+2,x∈R f(1)=0,f(2)=0 (Ⅱ)g(1)·f(1)+an+bn=1n+1 即an+bn=1 ① g(2)·f(2)+2an+bn=2n+1 即2an+bn=2n+1 、 由①②得an=2n+1-1,bn=2-2n+1, (Ⅲ)|Cn+1Cn|==·2n+1,設(shè)數(shù)列{rn}的公比為q,則rn+rn+1=rn(1+q)=|Cn+1Cn|=·2n+1 即rn(1+q)=·2n+1 ∴rn+1(1+q)=·2n+2 ∴=2 ∴rn=·2n+1 ∴=·4n Sn=π(+++…+)=·(41+42+…+4n)=·=(4n-1) ∴=== |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:成功之路·突破重點(diǎn)線·數(shù)學(xué)(學(xué)生用書) 題型:044
已知二次函數(shù)f(x)=ax2+bx(a,b為是常數(shù)且a≠0)滿足條件:f(2)=0且方程f(x)=x有等根.
(1)求f(x)的解析式;
(2)問是否存在實(shí)數(shù)m,n(m<n),使f(x)的定義域和值域分別為[m,n]和[2m,2n],如存在,求出m,n的值;如不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:成功之路·突破重點(diǎn)線·數(shù)學(xué)(學(xué)生用書) 題型:044
已知二次函數(shù)f(x)=ax2+bx+c(a>0)的圖象與x軸有兩個不同點(diǎn)的公共點(diǎn),若f(c)=0,且0<x<c時(shí),f(x)>0.
(Ⅰ)試比較與c的大小;
(Ⅱ)證明:-2<b<-1;
(Ⅲ)當(dāng)c>1,t>0時(shí),求證:++>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:中學(xué)教材標(biāo)準(zhǔn)學(xué)案 數(shù)學(xué) 高二上冊 題型:044
解答題
已知二次函數(shù)f(x)=ax2+bx+1(a,b∈R,a>0),設(shè)方程f(x)=x的兩個實(shí)根為x1和x2.
(1)如果x1<2<x2<4,設(shè)函數(shù)f(x)的對稱軸為x=x0,求證:x0>-1;
(2)如果|x1|<2,|x2-x1|=2,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:安徽省示范高中銅陵三中2006-2007學(xué)年度高三數(shù)學(xué)理科第一次診斷性考試卷 新課標(biāo) 人教版 人教版新課標(biāo) 題型:044
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:龍門中學(xué)、新豐一中、連平中學(xué)三校聯(lián)考試題、高三數(shù)學(xué)(理) 題型:044
|
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com