給出下列命題:
①存在實數(shù),使; ②函數(shù)是偶函數(shù);  
是函數(shù)的一條對稱軸的方程;
④若是第一象限的角,且,則.
其中正確命題的序號是         .
②③.

試題分析:對于①,由于,所以的最大值為,所以命題①錯誤;
對于②,由,而是偶函數(shù),所以命題②正確;
對于③,把代入,即,所以是函數(shù)的一條對稱軸的方程,所以命題③正確;
對于④,舉出反例,取,,是第一象限的角,且,但.所以命題④錯誤.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=sin(2x+
π
3
)+
3
3
sin2x-
3
3
cos2x

(1)求f(x)的最小正周期及其圖象的對稱軸方程;
(2)將函數(shù)f(x)的圖象向右平移
π
3
個單位長度,得到函數(shù)g(x)的圖象,求g(x)在區(qū)間[-
π
6
,
π
3
]
上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知
AC
=(cos
x
2
+sin
x
2
,-sin
x
2
),
BC
=(cos
x
2
-sin
x
2
,2cos
x
2
)
,設(shè)f(x)=
AC
BC

(1)求f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)設(shè)關(guān)于x的方程f(x)=a在[-
π
2
π
2
]有兩個不相等的實數(shù)根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(文)已知函數(shù)f(x)=(
3
sinωx+cosωx)cosωx-
1
2
(ω>0)
的最小正周期為4π.
(1)求ω的值;
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

函數(shù)f(x)=
2
sin(
π
4
-x)+4sin
x
2
cos
x
2

(Ⅰ)在△ABC中,cosA=-
3
5
,求f(A)的值;
(Ⅱ)求函數(shù)f(x)的最小正周期及函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,兩個圓形飛輪通過皮帶傳動,大飛輪O1的半徑為2r(r為常數(shù)),小飛輪O2的半徑為r,O1O2=4r.在大飛輪的邊緣上有兩個點A,B,滿足∠BO1A=,在小飛輪的邊緣上有點C.設(shè)大飛輪逆時針旋轉(zhuǎn),傳動開始時,點B,C在水平直線O1O2上.

(1)求點A到達(dá)最高點時A,C間的距離;
(2)求點B,C在傳動過程中高度差的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)角的終邊在第一象限,函數(shù)的定義域為,且,當(dāng)時,有,則使等式成立的的集合為                .                          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在△ABC中,角A,B,C所對邊的邊長分別是a,b,c.
(1)若c=2,C=且△ABC的面積等于,求cos(A+B)和a,b的值;
(2)若B是鈍角,且cos A=,sin B=,求sin C的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=sin2sin.
(1)在△ABC中,若sin C=2sin A,B為銳角且有f(B)=,求角A,B,C;
(2)若f(x)(x>0)的圖象與直線y交點的橫坐標(biāo)由小到大依次是x1,x2,…,xn,求數(shù)列{xn}的前2n項和,n∈N*.

查看答案和解析>>

同步練習(xí)冊答案