在平面直角坐標(biāo)系xoy中,已知直線l:8x+6y+1=0,圓C1:x2+y2+8x-2y+13=0,圓C2:x2+y2+8tx-8y+16t+12=0.
(1)當(dāng)t=-1時(shí),試判斷圓C1與圓C2的位置關(guān)系,并說(shuō)明理由;
(2)若圓C1與圓C2關(guān)于直線l對(duì)稱,求t的值;
(3)在(2)的條件下,若P(a,b)為平面上的點(diǎn),是否存在過(guò)點(diǎn)P的無(wú)窮多對(duì)互相垂直的直線l1和l2,它們分別與圓C1與圓C2相交,且直線l1被圓C1截得的弦長(zhǎng)與直線l2被圓C2截得的弦長(zhǎng)相等,若存在,求點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

解:(1)t=-1時(shí),圓C1的圓心C1(-4,1),半徑r1=2;圓C2的圓心C2(4,4),半徑r2=2
∴圓心距|C1C2|=>r1+r2=8
∴兩圓相離
(2)圓C2的圓心C2(-4t,4),半徑r2=
∵圓C1與圓C2關(guān)于直線l對(duì)稱,又直線l的斜率
得t=0;,
(3)假設(shè)存在P(a,b)滿足條件:不妨設(shè)l1的方程為y-b=k(x-a)(k≠0)
則l2的方程為y-b=-
因?yàn)閳AC1與圓C2的半徑相等,又直線l1被圓C1截得的弦長(zhǎng)與直線l2被圓C2截得的弦長(zhǎng)相等,
所以圓C1的圓心到直線l1距離,和圓C2的圓心到直線l2的距離相等,
=
整理得|(a+4)k-b+1|=|(b-4)k+a|
即(a+4)k-b+1=(b-4)k+a或(a+4)k-b+1=(4-b)k-a
即(a-b+8)k-a-b+1=0或(a+b)k+a-b+1=0
因?yàn)閗取值無(wú)窮多個(gè)
所以
解得
∴這樣的點(diǎn)P可能是P1(-),P2(-
∴所求點(diǎn)P的坐標(biāo)為(-)和(-).
分析:(1)求得兩圓的圓心距,與半徑半徑,即可求得結(jié)論;
(2)確定圓C2的圓心與半徑,兩圓圓C1與圓C2關(guān)于直線l對(duì)稱,直線l的斜率,可求t的值;
(3)利用圓C1與圓C2的半徑相等,又直線l1被圓C1截得的弦長(zhǎng)與直線l2被圓C2截得的弦長(zhǎng)相等,可得圓C1的圓心到直線l1距離,和圓C2的圓心到直線l2的距離相等,由此可得結(jié)論.
點(diǎn)評(píng):本題考查圓與圓的位置關(guān)系,考查圓的對(duì)稱性,考查存在性問(wèn)題的探求,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,雙曲線中心在原點(diǎn),焦點(diǎn)在y軸上,一條漸近線方程為x-2y=0,則它的離心率為( 。
A、
5
B、
5
2
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為
x=2t-1 
y=4-2t .
(參數(shù)t∈R),以直角坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立相應(yīng)的極坐標(biāo)系.在此極坐標(biāo)系中,若圓C的極坐標(biāo)方程為ρ=4cosθ,則圓心C到直線l的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程) 在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為
x=2cosθ
y=2sinθ+2
 (參數(shù)θ∈[0,2π)),若以原點(diǎn)為極點(diǎn),射線ox為極軸建立極坐標(biāo)系,則圓C的圓心的極坐標(biāo)為
 
,圓C的極坐標(biāo)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣東)在平面直角坐標(biāo)系xOy中,直線3x+4y-5=0與圓x2+y2=4相交于A、B兩點(diǎn),則弦AB的長(zhǎng)等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點(diǎn).
(Ⅰ)若點(diǎn)A的橫坐標(biāo)是
3
5
,點(diǎn)B的縱坐標(biāo)是
12
13
,求sin(α+β)的值;
(Ⅱ) 若|AB|=
3
2
,求
OA
OB
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案