已知函數(shù)f(x)=
kx+2,x≤0
lnx,x>0
,若k>0,則函數(shù)y=|f(x)|-1的零點(diǎn)個(gè)數(shù)是( 。
分析:問題轉(zhuǎn)化成f(x)=1或f(x)=-1.當(dāng)x>0時(shí),可解得x=e或x=
1
e
;當(dāng)x≤0時(shí),可解得x=-
1
k
<0
x=-
3
k
<0
,即方程有4個(gè)根,則函數(shù)有4個(gè)零點(diǎn).
解答:解:由y=|f(x)|-1=0得|f(x)|=1,即f(x)=1或f(x)=-1.
當(dāng)x>0時(shí),由lnx=1或lnx=-1,解得x=e或x=
1
e

當(dāng)x≤0時(shí),由kx+2=1或kx+2=-1,解得x=-
1
k
<0
x=-
3
k
<0

所以函數(shù)y=|f(x)|-1的零點(diǎn)個(gè)數(shù)是4個(gè),
故選D.
點(diǎn)評(píng):本題考查根的存在性及根的個(gè)數(shù)的判斷,轉(zhuǎn)化為對(duì)應(yīng)方程的根是解決問題的關(guān)鍵,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
(1)函數(shù)f(x)=log3(x2-2x)的單調(diào)減區(qū)間為(-∞,1);
(2)已知P:|2x-3|>1,q:
1
x2+x-6
>0
,則p是q的必要不充分條件;
(3)命題“?x∈R,sinx≤
1
2
”的否定是:“?x∈R,sinx>”;
(4)已知函數(shù)f(x)=
3
sinωx+cosωx(ω>0)
,y=f(x)的圖象與直線y=2的兩個(gè)相鄰交點(diǎn)的距離等于π,則y=f(x)的單調(diào)遞增區(qū)間是[kπ-
π
3
,kπ+
π
6
],k∈z
;
(5)用數(shù)學(xué)歸納法證明(n+1)(n+2)…(n+n)=2n•1•3…(2n-1)(n∈N*)時(shí),從“k”到“k+1”的證明,左邊需增添的一個(gè)因式是2(2k+1);
其中所有正確的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4x
4x+2

(1)試求f(
1
n
)+f(
n-1
n
)(n∈N*)
的值;
(2)若數(shù)列{an}滿足an=f(0)+f(
1
n
)
+f(
2
n
)
+…+f(
n-1
n
)
+f(1)(n∈N*),求數(shù)列{an}的通項(xiàng)公式;
(3)若數(shù)列{bn}滿足bn=2n+1•an,Sn是數(shù)列{bn}前n項(xiàng)的和,是否存在正實(shí)數(shù)k,使不等式knSn>4bn對(duì)于一切的n∈N*恒成立?若存在指出k的取值范圍,并證明;若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2004•黃浦區(qū)一模)已知函數(shù)f(x)=k+
x
,存在區(qū)間[a,b]⊆[0,+∞),使f(x)在[a,b]上的值域仍是[a,b],求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=k[(logax)2+(logxa)2]-(logax)3-(logxa)3,g(x)=(3-k2)(logax+logxa),(其中a>1),設(shè)t=logax+logxa.
(Ⅰ)當(dāng)x∈(1,a)∪(a,+∞)時(shí),試將f(x)表示成t的函數(shù)h(t),并探究函數(shù)h(t)是否有極值;
(Ⅱ)當(dāng)x∈(1,+∞)時(shí),若存在x0∈(1,+∞),使f(x0)>g(x0)成立,試求k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:吉林省模擬題 題型:單選題

已知函數(shù)f(x)=+k定義域?yàn)镈,且方程f(x)=x在D上有兩個(gè)不等實(shí)根,則k的取值范圍是
[     ]
A.-1<k≤
B.≤k<1
C.k>-1
D.k<1

查看答案和解析>>

同步練習(xí)冊(cè)答案