高二某次數(shù)學(xué)考試1800名考生數(shù)學(xué)成績(jī)符合正態(tài)分布X~N(90,100),則本次考試數(shù)學(xué)成績(jī)?cè)?00分以上的人數(shù)約為(  )
A、82B、164
C、286D、571
考點(diǎn):正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:據(jù)考生的成績(jī)X~N(90,100),得到正態(tài)曲線關(guān)于x=90對(duì)稱,根據(jù)3ρ原則知P(80<x<100)=0.6826,再根據(jù)對(duì)稱性得到結(jié)果.
解答: 解:∵考生的成績(jī)X~N(90,100),
∴正態(tài)曲線關(guān)于x=90對(duì)稱,且標(biāo)準(zhǔn)差為10,
根據(jù)3ρ原則知P(80<x<100)=P(90-2×10<x<90+2×10)=0.6826,
∴P(x>100)=
1
2
(1-0.6826)=0.1587,
∴本次考試數(shù)學(xué)成績(jī)?cè)?00分以上的人數(shù)1800×0.1587≈286.
故選:C.
點(diǎn)評(píng):本題考查正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義,解題的關(guān)鍵是注意利用正態(tài)曲線的對(duì)稱性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x>0,y>0,z>0,x+2y+3z=3,那么(x+
1
4y
2+(2y+
1
6z
2+(3z+
1
2x
2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)z=i(1+i)(i是虛數(shù)單位)的共軛復(fù)數(shù)
.
z
在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線3x+y-3=0與直線6x+my+1=0平行,則m的值為( 。
A、2B、-2C、18D、-18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且a:b:c=
3
:1:2,則角B為(  )
A、30°B、60°
C、90°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“?x∈R,x2+x+3>0”的否定是( 。
A、?x∈R,x2+x+3≤0
B、?x∈R,x2+x+3<0
C、?x∈R,x2+x+3≤0
D、?x∈R,x2+x+3<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知AD、BE分別是△ABC的邊BC,AC上的中線,且
AD
=
a
,
BE
=
b
,則
BC
=(  )
A、
1
3
a
+
2
3
b
B、
2
3
a
+
1
3
b
C、
2
3
a
+
4
3
b
D、
4
3
a
+
2
3
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)據(jù)x1,x2,x3的中位數(shù)為k,眾數(shù)為m,平均數(shù)為n,方差為p,則下列說(shuō)法中,錯(cuò)誤的是( 。
A、數(shù)據(jù)2x1,2x2,2x3的中位數(shù)為2k
B、數(shù)據(jù)2x1,2x2,2x3的眾數(shù)為2m
C、數(shù)據(jù)2x1,2x2,2x3的平均數(shù)為2n
D、數(shù)據(jù)2x1,2x2,2x3的方差為2p

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由數(shù)字2,3,4,5,6所組成沒有重復(fù)數(shù)字的四位數(shù)中5與6相鄰的奇數(shù)有( 。
A、14個(gè)B、15個(gè)
C、16個(gè)D、17個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案