A. | -1 | B. | 2或-1 | C. | 2 | D. | $\frac{1}{2}$ |
分析 直線y=kx-2代入拋物線y2=8x,消去y,可得一元二次方程,利用線段AB的中點的縱坐標(biāo)為2,結(jié)合韋達(dá)定理,即可求出k的值.
解答 解:直線y=kx-2代入拋物線y2=8x,消去y可得k2x2+(-4k-8)x+4=0,
設(shè)A(x1,y1),B(x2,y2),則x1+x2=$\frac{4k+8}{{k}^{2}}$,
∵線段AB的中點的縱坐標(biāo)為2,
∴y1+y2=4,
∴k(x1+x2)-4=4,
∴k•$\frac{4k+8}{{k}^{2}}$-4=4
∴k=2,
故選C.
點評 本題考查直線與拋物線的位置關(guān)系的應(yīng)用,具體涉及到拋物線的性質(zhì)、韋達(dá)定理,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ①③ | C. | ②③ | D. | ③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com