已知雙曲線的離心率為,則a=   
【答案】分析:設(shè)c>0,利用c2=a2+7,a>0,e==即可求得a.
解答:解:依題意,c2=a2+7,
又a>0,e==,
∴c=a,
a2=a2+7,
∴a2=9,又a>0,
∴a=3.
故答案為:3.
點評:本題考查雙曲線的簡單性質(zhì),明確焦點在x軸的雙曲線中半焦距c,實半軸a,虛半軸b之間的關(guān)系c2=a2+b2是關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的離心率為2,焦點是(-4,0),(4,0),則雙曲線方程為( 。
A、
x2
4
-
y2
12
=1
B、
x2
12
-
y2
4
=1
C、
x2
10
-
y2
6
=1
D、
x2
6
-
y2
10
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的離心率為2,F(xiàn)1、F2是左右焦點,P為雙曲線上一點,且∠F1PF2=60°,S△PF1F2=12
3
.該雙曲線的標(biāo)準(zhǔn)方程為
x2
4
-
y2
12
=1
x2
4
-
y2
12
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的離心率為2,焦點是(-4,0),(4,0),則雙曲線方程為
x2
4
-
y2
12
=1
x2
4
-
y2
12
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年云南省高三上學(xué)期第一次月考試題文科數(shù)學(xué) 題型:解答題

(本小題滿分12分)

已知雙曲線的離心率為2,焦點到漸近線的距離等于,過右焦點的直線

 

交雙曲線于、兩點,為左焦點,

(Ⅰ)求雙曲線的方程;

(Ⅱ)若的面積等于,求直線的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆河北省高二上學(xué)期第二次月考理科數(shù)學(xué)試卷 題型:解答題

已知雙曲線的離心率為2,焦點到漸近線的距離為,點P的坐標(biāo)為(0,-2),過P的直線l與雙曲線C交于不同兩點M、N.  

(1)求雙曲線C的方程;

(2)設(shè)(O為坐標(biāo)原點),求t的取值范圍

 

查看答案和解析>>

同步練習(xí)冊答案