(06年湖南卷文)(14分)
已知橢圓C1:,拋物線C2:,且C1、C2的公共弦AB過(guò)橢圓C1的右焦點(diǎn).
(Ⅰ)當(dāng)軸時(shí),求p、m的值,并判斷拋物線C2的焦點(diǎn)是否在直線AB上;
。á颍┤且拋物線C2的焦點(diǎn)在直線AB上,求m的值及直線AB的方程.
解析:(Ⅰ)當(dāng)AB⊥x軸時(shí),點(diǎn)A、B關(guān)于x軸對(duì)稱,所以m=0,直線AB的方程為
x=1,從而點(diǎn)A的坐標(biāo)為(1,)或(1,-).
因?yàn)辄c(diǎn)A在拋物線上,所以,即.
此時(shí)C2的焦點(diǎn)坐標(biāo)為(,0),該焦點(diǎn)不在直線AB上.
(Ⅱ)解法一 當(dāng)C2的焦點(diǎn)在AB時(shí),由(Ⅰ)知直線AB的斜率存在,設(shè)直線AB的方程為.
由消去y得. ……①
設(shè)A、B的坐標(biāo)分別為(x1,y1), (x2,y2),
則x1,x2是方程①的兩根,x1+x2=.
因?yàn)锳B既是過(guò)C1的右焦點(diǎn)的弦,又是過(guò)C2的焦點(diǎn)的弦,
所以,且
.
從而.
所以,即.
解得.
因?yàn)镃2的焦點(diǎn)在直線上,所以.
即.
當(dāng)時(shí),直線AB的方程為;
當(dāng)時(shí),直線AB的方程為.
解法二 當(dāng)C2的焦點(diǎn)在AB時(shí),由(Ⅰ)知直線AB的斜率存在,設(shè)直線AB的方程
為.
由消去y得. ……①
因?yàn)镃2的焦點(diǎn)在直線上,
所以,即.代入①有.
即. ……②
設(shè)A、B的坐標(biāo)分別為(x1,y1), (x2,y2),
則x1,x2是方程②的兩根,x1+x2=.
由消去y得. ……③
由于x1,x2也是方程③的兩根,所以x1+x2=.
從而=. 解得.
因?yàn)镃2的焦點(diǎn)在直線上,所以.
即.
當(dāng)時(shí),直線AB的方程為;
當(dāng)時(shí),直線AB的方程為.
解法三 設(shè)A、B的坐標(biāo)分別為(x1,y1), (x2,y2),
因?yàn)锳B既過(guò)C1的右焦點(diǎn),又是過(guò)C2的焦點(diǎn),
所以.
即. ……①
由(Ⅰ)知,于是直線AB的斜率, ……②
且直線AB的方程是,
所以. ……③
又因?yàn)?IMG height=49 src='http://thumb.zyjl.cn/pic1/img/20090401/20090401162449036.gif' width=93>,所以. ……④
將①、②、③代入④得,即.
當(dāng)時(shí),直線AB的方程為;
當(dāng)時(shí),直線AB的方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(06年湖南卷文)(14分)
已知函數(shù).
(I)討論函數(shù)的單調(diào)性;
(Ⅱ)若曲線上兩點(diǎn)A、B處的切線都與y軸垂直,且線段AB與x軸有公共點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com