已知全集 U={1,2,3,4,5},A={x|x2-6x+5=0,x∈R},B?CUA,則集合B 的個數(shù)是


  1. A.
    5
  2. B.
    6
  3. C.
    7
  4. D.
    8
C
分析:由全集U={1,2,3,4,5},A={x|x2-6x+5=0,x∈R}={1,5},知CUA={2,3,4},再由B?CUA,能求出滿足條件的集合B的個數(shù).
解答:∵全集U={1,2,3,4,5},A={x|x2-6x+5=0,x∈R}={1,5},
∴CUA={2,3,4},
∵B?CUA,即集合B是CUA的真子集,
故滿足條件的集合B有23-1=7個.
故選C.
點評:本題考查集合的子集個數(shù)的求法,是基礎(chǔ)題.解題時要認真審題,仔細解答,注意集合的補集性質(zhì)的靈活運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

1、已知全集U={1,2,3,4,5,6,7},集合A={3,4,5,B=1,3,6},則A∩(CUB)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1、已知全集U={1,2,3},且CUA={2},則A的真子集有
3
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1、已知全集U={1,2,3,4},集合P={1,2},Q={2,3},則P∪(CUQ)等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U={1,2,3,4,5,6},A={2,4,6},B={1,3},則A∩CUB等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U={1,2,3,4,5},集合A={1,2,3},B={2,4},則(?UA)∪B為( 。

查看答案和解析>>

同步練習(xí)冊答案